Detailed **Syllabus M** Tech (Mechanical **Engineering**)

Semester wise roadmaps Structure for M.Tech Mechanical Engineering

Fall Sem SEM-1							
Course Code	Category	Course Title	L	Р	С		
MTME501	PC-1	Computer Aided Manufacturing	3	2	4		
MTME502	PC-2	Advanced Engineering Materials and Characterization	3	0	3		
MTME503	PC-3	Non Conventional Machining Processes	3	0	3		
MTME601	PC-4	Digital Fabrication with 3D Printing	3	2	4		
	PE-1	Program Elective -1	3	0	3		
RES701	Research	Research Methodology	2	0	2		
MTSE501	SE-1	Skill Enhancement Course	3	0	3		
		Total			22		

Winter Sem SEM-2						
Course Code	Course Code Category Course				С	
MTME504	PC-5	Theory of Casting and Welding	3	2	4	
	PE-2	Program Elective -2	3	2	4	
MTME602	PC-6	Predictive maintenance using AI and IoT	3	2	4	
	PE-3	Program Elective -3	3	0	3	
MTSE502	SE-2	Skill Enhancement Course-2	3	0	3	
Total					18	

Sem-3						
Course Code	Category	Course	L	Р	С	
MTPJ649	PE-Proj	Project	0	16	8	
	OE-1	Any Open elective	3	2	4	
	PE-4	Program Elective -4	3	2	4	
	PE-5	Program Elective -5	3	2	4	
Total					20	

Sem-4					
Course Code	Category	Course	L	Р	С
RES703	RES703 Final Dissertation				20
Total					20

List of Elective Subjects

- MTME505 Quality System and Reliability Engineering
- MTME506 Innovative Tool Design for Modern Manufacturing
- MTME507 Production Planning & Control

•

- MTME508 Operations Research for Mechanical Engineers
- MTME509 Product Lifecycle Management
- MTME510 Metal Forming Processes and Analysis
- MTME511 Design and Analysis of Experiments
- MTME512 Optimization Strategies for Mechanical Systems
- MTME513 Supply Chain Analytics and Optimization for Mechanical Engineers
- MTME603 AI Techniques for Renewable Energy System
- MTME604 Smart Automation with AI for Industry 4.0
- MTME605 Robotics and Artificial Intelligence
- MTME606 Advanced Product Design and Development
- MTME607 HVAC Design and Energy Management
- MTME608 AI Driven Material Development

Course Code: MTME501	Course Title: Computer-Aided Manufacturing	TPC	3	2	4	
Version No.	1.0					
Course Pre-requisites/ Co-requisites	None					
Anti-requisites (if any).	None					
Objectives:	 Understand the fundamentals of manufacturing and its role in modern ma Explore the integration of design and m CAM software. Learn the principles and programming of Study process planning and optimizati automated manufacturing. Develop skills in simulation and virtual production analysis. Analyze the impact of CAM systems o quality enhancement in manufacturing. 	nufactu anufact f CNC 1 ion tecl manufa	ring urin nacl hniq actu	g. Ig us hine lues ring	sing s. for for	

Course Outcomes	Course Outcome Statement
CO1	Explain the fundamentals of computer-aided manufacturing and its applications.
CO2	Design and analyze manufacturing processes using CAM software.
CO3	Apply modern manufacturing techniques in solving engineering problems.
CO4	Develop and simulate machining processes using CNC programming.
CO5	Evaluate CAM strategies and implement automation to enhance manufacturing efficiency and precision.
	TOTAL HOURS OF INSTRUCTIONS: 45

Module No. 1Introduction to Computer-Aided Manufacturing: 6 Hours

Overview of CAM and its evolution; Role of CAM in manufacturing; Components and architecture of CAM systems; Integration of CAD and CAM; Benefits and challenges of implementing CAM in industries.

Module No. 2	9 Hours				
Types of CNC machines and their components; Coordinate systems and machine axes;					
CNC program	ming: G-codes, M-codes, and toolpath generation; Adva	nced CNC			
programming c	oncepts (subprograms, parametric programming); Hands-on e	exercises on			
CNC machines.					

Module No. 3Process Planning and Toolpath Optimization 10 Hours Introduction to process planning; Computer-aided process planning (CAPP); Toolpath strategies: contouring, pocketing, drilling; Optimization of machining parameters for productivity and surface quality; Case studies using CAM software.

Module No. 4 Simulation and Virtual Manufacturing:				
Basics of manufacturing simulation; Virtua	Il machining and process verification			
Collision detection and toolpath validation	n; Applications of digital twins in			
manufacturing; Use of CAM software for 3D m	achining and mold manufacturing.			

Module No. 5	Applications of CAM in Advanced Manufacturing:	10 Hours
--------------	--	----------

Additive manufacturing integration with CAM; Robotics and automation in CAM systems; Flexible manufacturing systems (FMS) and CAM; Industry 4.0 and smart manufacturing; Future trends in CAM technologies.

Text Books

- 1. Groover, M. P., Automation, Production Systems, and Computer-Integrated Manufacturing, Pearson, 2023.
- 2. Ibrahim Zeid, CAD/CAM: Theory and Practice, McGraw Hill, 2021.

References

- 1. Nanfara, F., Uccello, T., & Mandal, S., *Programming of CNC Machines*, Industrial Press, 2022.
- 2. P.N. Rao, CAD/CAM Principles and Applications, Tata McGraw Hill, 2021.
- 3. Kalpakjian, S., & Schmid, S. R., *Manufacturing Engineering and Technology*, Pearson, 2021.

Lab Exercise:

- 1. Overview of CAM Systems: Introduction to CAD and CAM integration and basics of CNC machines
- 2. CNC Programming: Learn and practice CNC programming using G-code and M-code for simple machining tasks
- 3. CNC Milling Operations: Develop and execute CNC programs for basic milling operations on a CNC machine
- 4. CNC Turning Operations: Develop CNC programs for turning operations and execute on CNC lathe machines
- 5. Toolpath Optimization: Create optimized toolpaths for milling, pocketing, and drilling operations
- 6. CNC Simulation and Verification: Simulate CNC operations using CAM software and verify toolpaths to detect errors
- 7. Virtual Machining and Process Simulation: Use CAM software to simulate 3-axis and 5-axis machining operations and analyze tool engagement and material removal
- 8. CAD to CAM Workflow: Convert a CAD model into CAM instructions and generate toolpaths for manufacturing a complete part
- 9. Subprogram and Parametric Programming: Develop modular CNC code using subprograms and parametric variables for machining similar components
- 10. Collision Detection and Toolpath Validation: Validate toolpaths for interference and collision using virtual simulation software
- 11. Design and Manufacture of a Mold Component: Complete end-to-end CAM project

from CAD design to machining a mold insert using optimized strategies

- 12. Multi-Axis Machining Project: Generate and simulate toolpaths for a complex part using 4-axis or 5-axis machining techniques
- 13. Integration of Additive and Subtractive Manufacturing: Design a part for hybrid manufacturing, simulate additive build, and plan subtractive finishing
- 14. Smart CAM System for Mass Customization: Develop a flexible CAM program that can adapt to product variations for batch production
- 15. Digital Twin-Based Machining Project: Create a digital twin of a CNC process to optimize toolpaths, simulate faults, and monitor performance in real time

Course Type	Embedded Theory and Lab (ETL)				
	Theory	100%			
	Continuous Assessment Test-1	15%			
Mode of Evaluation	Continuous Assessment Test-2	15%			
	Digital Assignments/Quizzes (Min)	20%			
	Final Assessment Test	50%			
	Laboratory	25%			
Prepared by	Dr. Sukhdeep Singh				
Recommended by the					
Board of Studies on					
Date of Approval by					
the Academic Council					

Course Code MTME502	:		Title: Advance als and Char	ed Engineerin	g	TPC	3	0	3
Version No.		1.0							
Course Pre-requisites/ Co-requisites		None							
Anti-requisites (if any). None									
Objectives: 1. To understand the properties and classification advanced engineering materials. Objectives: 2. To explore the synthesis, processing, and applic of advanced materials. 3. To learn various material characterization techn and their principles. 4. To correlate material properties with microstructu performance.				icati hniq	ons ues				
Course Outcomes			Course Ou	itcome Stateme	nt				
CO1	Classify a properties	•		engineering n	naterials	based	on	the	ir
CO2	Explain th	e structu	re, properties	, and application of a structured m		dvance	d mo	etall	ic
CO3		ne charac	teristics and	applications of		ed poly	mer	s an	ıd
CO4	.			sed on microst	ructural	analysis	5.		
CO5	Apply know	wledge of	f advanced ma	aterials to solve	enginee	ering pr	oble	ms.	
			T	OTAL HOURS	OF INS	TRUCI	IOI	NS: 4	15
Module No. 1	Intro	duction	to Advanced	Engineering N	<i>lataria</i>	.	0.1	Iour	• ~
Overview of polymers, co	f traditional eramics, an etional mate	and adva d compo erials: Co	nced materia sites, Smart nductive pol	ls, Properties a materials: Pie ymers, biomat	and class zoelectri	sificatio c, shaj	ons: pe r	Met nem	als, ory
Module No. 2Advanced Metallic Materials:9		9]	Hou	rs					
High-strength low-alloy (HSLA) steels, maraging steels, shape memory alloys, superalloys (nickel and cobalt based); titanium alloys and their applications; advanced aluminum alloys; nanostructured metallic materials.									
Module No.	3	Advan	ced Polymers	and Composi	tes:		9]	Hou	rs
Thermosetting and thermoplastic polymers; conducting polymers; polymer blends and alloys; fiber-reinforced composites, particulate and laminated composites; metal matrix and ceramic matrix composites; processing and applications.									

Module No. 4 Chara	cterization Techniques for Advanced Materials:	10 Hours					
Structural characterizat	ion: X-ray diffraction (XRD), neutron diffraction, Mi	crostructural					
_	cal microscopy, SEM, TEM, and AFM, Therm	•					
	alorimetry (DSC), thermogravimetric analysis (TGA)						
	testing, tensile testing, and nanoindentation, S	pectroscopic					
	an spectroscopy, and EDS/EDX.						
Module No. 5 Ad	vanced Materials: Applications and Emerging Trends:	8 Hours					
Applications of advanc	ed materials in aerospace, automotive, electronics, an	d healthcare,					
	uantum dots, graphene, and topological insulators, I						
	hotovoltaics, fuel cells, and batteries, Role of AI a						
learning in materials s	cience, Challenges and future directions in advanc	ed materials					
research.							
Text Books							
	lister Jr. and David G. Rethwisch, "Callister's Mater : An Introduction", Wiley, 2021 (11 th Edition)	rials Science					
	elford, "Introduction to Materials Science for Enginee	rs", Pearson,					
	keland and Wendelin J. Wright, "Fundamentals	of Materials					
	gineering", Cengage Learning, 2019 (5 th Edition)						
References							
1. Peng, Zhiwei, 2	Xie, Kelvin Yu, Zhang, Mingming, et al. – Charac Is, and Materials 2025: In-Situ Characterization Teo Springer.	•					
•	Kharel, Parashu Ram, Sabat, Rama Krushna, et al. essing and Characterization Technology, 1st Edi						
•	- Advanced Materials Science and Technologies, ech Publications.	1st Edition					
Course Type	Theory (TH)						
	Theory 100)					
	Continous Assessment Test-1 150	%					
Mode of Evaluation	Continuus Assessment Test-1 150	%					
	Digital Assignments/Quizzes (Min) 209						
	Final Assessment Test509	6					
Prepared by	Dr. Sahil Sharma						
•	Recommended by the						
Board of Studies on							
Date of Approval by							
the Academic Council	the Academic Council						

Course Code: MTME503	Course Title: Non-Conventional Machining Processes	ТРС	3	0	3	
Version No.	io. 1.0					
Course Pre-requisites/ Co-requisites	None					
Anti-requisites (if any).	None					
Anti-requisites (if any).None1. To impart knowledge of the fundamental principles, mechanisms, and applications of various non-conventional machining processes.0. Dijectives:2. To enable students to analyse the influence of process parameters on the performance and capabilities of different non-conventional machining techniques.3. To develop the ability to select appropriate non- conventional machining processes for specific engineering applications considering material properties, geometry requirements, and economic factors.4. To introduce emerging trends and hybrid approaches in non- conventional machining for advanced manufacturing.						
	TOTAL HOURS OF INST	FRUCT				
	ction to NCMP	C1		Hou		
NCM Processes based o	Non-Conventional Machining (NCM) Processe n energy source, material removal mechanism , and Selection Criteria for NCM Processes.					
	ed Mechanical Machining Processes:		8 H	lour	S	
Principles, process param analysis Ultrasonic Mach analysis Whirling Jet M applicationsModule No. 3ChemicaIntroduction to Chemical	New Technology, Introduction, Mechanical Processes, Abrasive Jet Machining (AJM) – Principles, process parameters, characteristics, tool design, metal removal rate, and process analysis Ultrasonic Machining (USM) – Working principles, tool design, and performance analysis Whirling Jet Machining (WJM) – Fundamentals, process characteristics, and applications					
Principles, process flow, maskants, and applications. Electro-Chemical Machining (ECM) – Working principles, process parameters, and electrolytes. Metal Removal Rate – Factors affecting MRR in CHM and ECM. Dynamic & Hydro-Dynamic Effects – Process optimization and hydro-optimization techniques						
Module No. 4EDM & Beam Machining12 Hours						
Introduction to EDM – Basic principles and process scheme, Circuitry & Controls – Power supply, pulse generation, and control mechanisms, Metal Removal Rate (MRR) – Factors influencing MRR and process efficiency. Tool Material & Design – Selection criteria and performance considerations, Dielectric Fluid – Functions, types, and effects on machining, Process Analysis – Applications, advantages, and limitations						
Module No. 5 Laser Beam Machining 10 Hours						
Introduction to Beam Machining – Overview of Laser Beam Machining (LBM) and Electron Beam Machining (EBM) Laser Production & Machining – Laser generation,						

working principles, and industrial applications, Electron Beam Action – Fundamentals, process parameters, and material interaction, Process Parameters & Optimization – Factors affecting machining performance.

Text Books

- 1. **Rupinder Singh, J. Paulo Davim,** Non-Conventional Hybrid Machining Processes, Routledge, 2021
- 2. **Dr.P.N.Karthikeyan**, Non traditional Machining Processes, Forshung Publications, 2021.
- 3. **Prof. Vijay Kumar Jain,** Advanced Machining Processes, Allied Publishers, 2nd edition, 2021.

References

- 1. Wit Grzesik, Adam Ruszaj, Hybrid Manufacturing Processes: Physical Fundamentals, Modelling and Rational Applications, Springer, 2021.
- 2. Omkar I K, Non-Traditional Machining, Notion Press, 2021.
- **3.** Alokesh Pramanik, Kapil Gupta, Advanced Machining and Finishing, Elsevier, 2021.

Course Type	Theory Only (Th)	
	Theory	100%
	Continuous Assessment Test-1	15 %
Mode of Evaluation	Continuous Assessment Test -2	15%
	Digital Assignments/Quizzes (Min)	20%
	Final Assessment Test	50%
Prepared by	Dr. Kamaljit Singh	
Recommended by the		
Board of Studies on		
Date of Approval by		
the Academic Council		

Course Code:MTME504	Course Title: Theory of Casting and Welding TechnologyTPC324			
Version No.	1.0			
Course Pre-requisites/ Co-requisites	None			
Anti-requisites (if any).	None			
Objectives:	 To impart knowledge of design of different components related to casting such as pattern, core, gate, riser etc. To understand the concepts of cooling and solidification of metal and alloys in casting processes. To impart the knowledge of the physics involved behind different welding techniques. To impart knowledge of advanced welding processes such as underwater welding, welding in space. 			

Course Outcomes	Course Outcome Statement
CO1	Understand the fundamental principles of casting and welding processes.
CO2	Analyze and solve casting and welding related design and manufacturing problems.
CO3	Evaluate casting and welding defects and propose remedial measures.
CO4	Select appropriate casting and welding processes for various industrial applications.
CO5	Apply simulation tools for predicting and improving casting and welding performance.
	TOTAL HOURS OF INSTRUCTIONS: 45

 Module No. 1
 Fundamentals of Metal Casting

This module introduces the fundamental concepts of metal casting, providing an overview and classification of various casting processes. It covers mould parting analysis to optimize mould design, principles of pattern design for effective casting production, and the essentials of core design, including their placement and manufacturing. Students will gain a solid foundation in the basic elements required for successful casting operations.

8 Hours

Module No. 2	Module No. 2 Gating, Solidification, and Feeder Design in Metal		
	Casting		

This module delves into the design and analysis of gating systems, focusing on mould filling characteristics, fluidity, turbulence, and the types of gating elements. It includes mould filling analysis considering head losses and explores the concepts of cooling and solidification, including nucleation, growth, progressive and directional solidification, and Chvorinov's Rule (CFR). The mathematical treatment of solidification processes is emphasized, addressing factors like solidification time and rate. Feeder design and analysis topics include feeder shapes, risering curves, NRL methods, feeding distance, riser placement, and the design of feed aids to ensure defect-free casting.

Module No. 3 Fundamentals of Metal Welding	9 Hours			
This module begins with an overview and classification of welding processes,	followed by			
an in-depth study of the theory of arc welding. It examines the physics of the welding arc,				
its characteristics, efficiency, and the relationship with power sources. Key to	•			
the constructional features of welding power sources, static and dynamic cha	-			
duty cycles, and arc efficiency. Metal transfer mechanisms are analyzed,				
forces acting on droplets, transfer classification, transition current, melting r	-			
effects, and deposition efficiency, providing a comprehensive understan				
welding processes.				
Module No. 4 Advanced Welding Processes and Applications	9 Hours			
This module introduces advanced welding technologies and their industrial a				
It covers resistance welding principles, including contact resistance, calculatio				
time, and voltage, along with electrode material and shape selection. The mod				
specialized welding methods such as electron beam welding, ultrasonic welding				
welding, friction stir welding, electromagnetic pulse welding, and high-veloci	U			
impact welding. Application areas like plastic welding, underwater wel				
welding, and welding of cryogenic materials are discussed, along with the				
thermal stresses and distortion in welded assemblies.	······································			
Module No. 4 Inspection and Defects in Casting & Welding	10 Hours			
This module deals with identifying, understanding, and analyzing defects in				
welding operations. It covers the causes, effects, and remedies for common ca				
such as porosity, shrinkage cavities, hot tears, cold shuts, and misruns. In				
focuses on defects such as incomplete fusion, cracks, slag inclusion, p	0			
undercut. The module also introduces basic inspection and testing techniques including				
visual inspection, radiographic testing, ultrasonic testing, dye penetrant testing	-			
particle testing, and destructive tests. The emphasis is on developing qua				
practices and failure analysis in metal fabrication.				
Text Books				
1. Fundamentals of Metal Casting by R. A. Flinn, Addison Wesley, 2021				
2. Manufacturing Science by Ghosh and Malik, East West Press New De				
3. The Physics of Welding by J. F. Lancaster, Pergamon Press, 2019.	, -			
References				
1. S Kalpakjian and S R Schmid, Manufacturing Processes for Engineerin	ng Materials,			
Pearson education, 2019. 4. E.	- /			
2. Paul Degarmo, J T Black, Ronald A Kohser, Materials and p	processes in			
manufacturing, John wiley and sons, 2020				
3. Principles of Welding by R.W. Messler, John Wiley & Sons, 2020.				
List of Exercise				
1. Study and demonstration of various types of patterns used in metal cas	sting.			
2. Preparation of green sand moulds using single-piece and split patterns				
3. Casting of a simple metal component using sand casting and analysis				
4. Determination of sand properties — permeability, strength, moisture				
compactibility.	-			
5. Solidification time analysis for castings using Chvorinov's Rule (e	experimental			
validation).				

6. Gating system design and simulation using casting simulation software (e.g., MAGMASOFT, ProCAST, or AutoCAST).

7. Study and observation of welding power sources: characteristics of AC and DC machines.

8. Gas Tungsten Arc Welding (GTAW / TIG) — performing welds on various metals and studying weld bead profiles.

9. Shielded Metal Arc Welding (SMAW) — performing butt and fillet welds and identifying common welding defects.

10. Performing Gas Metal Arc Welding (GMAW / MIG) and measuring deposition efficiency and heat input.

11. Performing Submerged Arc Welding (SAW) — setup, welding, and analysis of penetration depth and bead geometry.

12. Introduction to advanced welding techniques: demonstration of Friction Stir Welding / Electron Beam Welding.

13. Conducting non-destructive testing (NDT) on weld joints: Visual Inspection, Dye Penetrant Test, and Ultrasonic Testing.

14. Metallographic examination of cast and welded specimens: sample preparation, polishing, and microstructure analysis.

15. Welding Simulation Exercise using ANSYS or Simufact: analyzing residual stress, thermal distortion, and weld pool dynamics.

Course Type	Embedded Theory and Lab (ETL)		
	Theory	75%	
	Continuous Assessment Test-1	15 %	
Mode of Evaluation	Continuous Assessment Test -2	15%	
	Digital Assignments/Quizzes (Min)	20%	
	Final Assessment Test	50%	
	Laboratory	25%	
Prepared by	Dr. Shivinder Singh		
Recommended by the			
Board of Studies on			
Date of Approval by			
Academic Council			

Course Code: MT	TME601Course Title: Digital Fabrication with 3DTPC32				
Version No.	Printing 10				
Course Pre-requisi requisites		1.0 None			
Anti-requisites (if a	any). None				
Objectives:	 To provide an in-depth understanding of dig principles and technologies. To explore the integration of CAD/CAM w workflows. To develop competency in materials, maching parameters for 3D printing. To enable students to analyze and select app additive manufacturing processes for different 5. To cultivate hands-on proficiency in slicing 	vith 3 nines, ppropr	D p and riate ppli	rintii proo	ng cess ons.
	post-processing for digital fabrication.				
Course Outcomes	Course Outcome Statement	Course Outcome Statement			
CO1	Explain the fundamentals and digital workflow of additive m	n the fundamentals and digital workflow of additive manufacturing.			
CO2	Differentiate between various 3D printing technologies and the mechanisms.	tiate between various 3D printing technologies and their operational sms.			
CO3	Select suitable materials and set optimal process parameters	for 3	D pı	rintir	ng.
CO4	Apply DFAM principles to design functional and optimized	parts			
CO5	Evaluate post-processing techniques and real-world applicati fabrication.	ions o	of di	gital	-
	TOTAL HOURS OF INS	TRU	CT	ION	: 45
Module No. 1	undamentals of Digital Fabrication and 3D Printing		9 H	ours	5
Introduction to digital fabrication, evolution of digital manufacturing, principles of additive manufacturing, classification of 3D printing technologies, digital fabrication workflow, CAD to print concept, comparison with subtractive processes, role of rapid prototyping.					
	D Printing Technologies and Hardware			Hou	
Direct Metal La	Modeling (FDM), Stereolithography (SLA), Selective Laser ser Sintering (DMLS), Binder Jetting, Material Jetting	g, ke			
components, print	head technologies, heated beds, cooling systems, slicing softw	<i>N</i> are.			

Thermoplastics (PLA, ABS, PETG), photopolymers, metal powders, composite filaments, ceramics, bio-compatible materials, material handling and storage, layer height, infill patterns, print speed, support structures, bed adhesion techniques, part orientation.

		1
Module No. 4	Design for Additive Manufacturing (DFAM) and Digital	10 Hours
	Modeling	
	oles, topology optimization, support generation, lightweighting, hollow	
_	d STL editing, slicing strategies, CAD modeling for 3D printing, gen	erative
	etric modeling, file formats (STL, AMF, 3MF).	I
Module No. 5	Post-Processing and Industrial Applications	9 Hours
	val, sanding and finishing, annealing and curing, painting and coating	
• •	plications in aerospace, automotive, biomedical, architecture,	electronics
sustainability a	and recycling in 3D printing, future trends in digital fabrication.	
Text Books		
	as Gebhardt & Julia Kessler, Additive Manufacturing: 3D Printing	for
Prototy	pping and Manufacturing, 3rd Edition, Hanser Publishers, 2023.	
	Iorvath & Rich Cameron, Mastering 3D Printing, 2nd Edition, Apr	ess, 2021.
Reference Bool		
	bson, David Rosen & Brent Stucker, Additive Manufacturing Tech	•
	g, Rapid Prototyping, and Direct Digital Manufacturing, 3rd Edition	, Springer,
2021.		
	Xai Chua & Kah Fai Leong, 3D Printing and Additive Manufacturin	ng: Principle
	plications, 5th Edition, World Scientific Publishing, 2021.	
	A. Jordan, 3D Printing: The Next Industrial Revolution, Revised Edi	tion, MIT
Press, 2		
Lab Experi	ments	
1. Study	of different 3D printing technologies: FDM, SLA, SLS, DMLS – w	orking
princip	les and machine components.	
2. CAD n	nodeling of a mechanical component suitable for 3D printing using	
SolidW	/orks/Fusion 360.	
3. File for	rmat conversion and validation: Exporting CAD models to STL, ch	ecking for
errors,	and fixing mesh issues.	
4. Slicing	a 3D model using slicing software (e.g., Cura, PrusaSlicer): infill se	tting, layer
height,	supports, print speed.	
5. Printir	ng a simple part using FDM printer: Printing a bracket, clip, or fixt	ure,
observi	ing build process.	
6. Materi	ial loading/unloading and calibration: Bed leveling, extruder priming	g, and
temper	ature setting.	
7 Multi-	nart assembly printing . Design and print a simple multi-part produc	t like a box

7. **Multi-part assembly printing**: Design and print a simple multi-part product like a box with lid or gear assembly.

- 8. **Design for Additive Manufacturing (DFAM)**: Creating lightweight lattice structures or topology optimized designs.
- 9. **Support structure optimization**: Compare results with auto-generated vs. custom support structures.
- 10. **Dimensional accuracy testing**: Print a calibration cube or dimensional test object and measure tolerances.
- 11. **Post-processing techniques**: Sanding, polishing, chemical smoothing (acetone vapor bath), and painting.
- 12. **Material property evaluation**: Print tensile test specimens and perform tensile testing (optional if UTM is available).
- 13. **Dual extrusion printing** (if printer is available): Print parts with soluble supports or dual-color prints.
- 14. **3D printing using flexible and composite filaments**: TPU, carbon fiber reinforced PLA challenges and benefits.
- 15. **Mini project**: Design, print, and post-process a functional product prototype (e.g., phone stand, drone frame, enclosure).

Course Type	Embedded Theory & Lab		
	Theory	75%	
	Continuous Assessment Test-1	15%	
Mode of Evaluation	Continuous Assessment Test-2	15%	
Nioue of Evaluation	Digital Assignment/Quizzes (Min)	20%	
	Final Assessment Test	50%	
	Laboratory	25%	
Prepared by	Dr. Mandeep Kumar		
Recommended by the			
Board of Studies on			
Date of Approval by			
the Academic Council			

Course Code:MTME	E 602	Course Title: Predictive maintenance using AI and IOT	ТРС	3	2	4
Version No.						
Course Pre- requisites/ Co requisites	0-	None				
Anti-requisit any).	es (if	None	None			
Objectives:	 To explain maintenance objectives and functions, factors influencing Plant Availability. To determine the optimal overhaul/repair/replacement maintenance policy for an equipment subject to breakdown. To explain different maintenance systems and the steps involved in establishing a maintenance plan. To gain knowledge about the Predictive maintenance using AI and IOT 				cement n. wolved	
		СО-РО Мар	ping			
Course Outcomes			ome Statement			
CO1	influ	gain Knowledge about maintenar uencing Plant Availability				rs
CO2	mair	pply engineering principles optimal overhaul/repair/replacement aintenance policy for equipment.				
CO3	a n	ize different maintenance system naintenance plan and designi ntenance and lubrication program	ng a technical			
CO4		luate and interpret data the Predic		e using A	I and IO	Г.
CO5	Dep	loy predictive maintenance soluti	ons and analyze	real-wor	ld case s	tudies
		ТО	TAL HOURS O	F INSTR	UCTIO	NS: 45
Module No.	1	Introductio	n		9 H	ours
Introduction: Objectives and Functions of maintenance. Factors influencing plant availability, Maintenance control, Maintenance Strategies, Organization for Maintenance. Failure Statistics: Breakdown time distributions, Running-in failures, Time independent failures, Wear-out failures, Failure Probability, Survival Probability and age specific failure rates.						
Module No. 2	2	Overhaul and R	epair		9 H	ours
Overhaul and Repair: Meaning and difference, optimal overhaul / Repair / Replace maintenance policy for equipment subject to breakdown. Replacement Decisions: Deterministic and stochastic replacement situations, failure and preventive replacement, Optimal Interval between preventive replacement of equipment subject to breakdown, group replacement.						

Module No. 3	Maintenance Systems	9 Hours			
Maintenance S	Maintenance Systems: Fixed time maintenance, Condition based Maintenance, Operate to				
failure, Opport	failure, Opportunity Maintenance, Design out maintenance, Total Productive Maintenance.				
Maintenance P	lanning: Establishing maintenance plan and schedule, illustr	ative examples,			
	ntenance: Designing a Technically sound preventive mainte				
failure data, FN	IECA, Maintenance to prevent failures, lubrication program	development.			
Module No. 4	Predictive Maintenance and Machine Learning	9 Hours			
Types of Ma	chine Learning Models Used in Predictive Maintena	nce, Predictive			
Maintenance U	Jse Cases Across the Industries, SPD Technology, Benefit	ts of Predictive			
Maintenance us	sing AI and IOT, Future Trends in Predictive Maintenance.				
Module No. 5	Predictive Maintenance and Machine Learning nent on Edge/Cloud.Real-time analytics and dashboards.C	9 Hours			
	y, integration, Case studies: Smart factories, Energy systems,	Transportation.			
Text Books					
	umar Tyagi, Shrikant Tiwari, Gulshan Soni, Data Analytic				
-	ence for Predictive Maintenance in Smart Manufacturing, Ta	aylor & Francis,			
2024.					
	Bharathi, K. Sreenath, M. Rama, Dr. M. Rajendran, S.				
	nance System using IoT and Machine Learning, Royal Be	ook Publishing,			
2024.					
References		(F ·)			
	Techworth, IoT Maintenance: Predictive Techniques for Sm dently Published, 2024.	ari Equipment,			
1	ndan, Suseendran Gopalakrishnan, Souvik Pal, Noor Za	man Industrial			
	of Things (IIoT): Intelligent Analytics for Predictive Main				
	er, 2022.	condition, writey-			
Seriven					

List of Exercise

- 1. Study and setup of a typical IoT architecture for industrial monitoring applications
- 2. Vibration analysis using accelerometer sensors on rotating machinery
- 3. Temperature and humidity monitoring using DHT11/22 with NodeMCU or Raspberry Pi
- 4. Data acquisition from industrial motors using current and voltage sensors
- 5. Streaming sensor data to cloud using MQTT protocol and ThingSpeak/ThingsBoard platform
- 6. Real-time dashboard creation to monitor motor health parameters on cloud platforms
- 7. Preprocessing and filtering of noisy sensor data using Python/Excel/Matlab
- 8. Feature extraction from time-series data (mean, standard deviation, FFT, etc.)
- 9. Anomaly detection using ML algorithms (Isolation Forest or SVM) in Python
- 10. Prediction of Remaining Useful Life (RUL) using linear regression and decision trees
- 11. Using AutoML tools (e.g., Google AutoML, Teachable Machine) for sensor data classification
- 12. Condition monitoring of a bearing test rig using vibration and temperature sensors
- 13. Integration of sensor and actuator systems for auto-shutdown on fault detection
- 14. Edge computing using Raspberry Pi for local data processing and decision-making
- 15. Mini project: Develop a complete predictive maintenance prototype (sensor \rightarrow cloud \rightarrow analytics

Course Type	Embedded Theory & Lab (ETL)	
Mode of Evaluation	Theory Continuous Assessment Test-1 Continuous Assessment Test -2 Digital Assignments/Quizzes (Min) Final Assessment Test	75% 15% 15% 20% 50%
	Laboratory	25%
Prepared by	Kushdeep Rana	
Recommended		
by the Board of		
Studies on		
Date of		
Approval by		
Academic		
Council		

Course Code: M	ATSE501	Course Title:Technical Communication and Professional DevelopmentI	LTPC	3	0	0	3
Version No.		1.0					<u> </u>
Course Pre-requisites	isites/ Co-	None					
Anti-Requisites	(if any)	None					
Objectives:		 engineering professionals. 2. To master technical writing, including reports proposals. 3. To enhance verbal communication and professional settings 4. To foster cross-functional team collaboration 	 engineering professionals. 2. To master technical writing, including reports, research papers proposals. 3. To enhance verbal communication and presentation skills professional settings 4. To foster cross-functional team collaboration and profess etiquette and to prepare students for interviews and create imparts 				
Course Outcomes		Course Outcome Statement					
C01	Demonst proposals	te proficiency in technical writing, including crafting error-free reports					ts and
CO2			anced presentation skills to articulate complex ideas effectively.				
CO3		eadiness for professional interactions through enhancements of the second states and the second states and the second states are second states and second states are second states and second states are second st	anced	ver	bal	and	non-
CO4	Apply a collabora	ctive listening and professional etiquette in ions.	cross-	fun	ctio	nal	team
C05	Create print	ofessional branding materials like resumes and Link tandards.	kedIn p	orof	iles	that	meet
		TOTAL HOURS OF IN	NSTRU	СТІ	ONS	S: 45	Hours
Module No		Effective Communication for Engineers				ours	
Understanding	g communi	cation models for engineering professionals, Master	ring ad	lvan	icec	l gra	ımmar
for professiona	al settings,	Active listening and its role in technical environment	ts.				
Module N	0.2	Technical Report Writing		9	He	ours	
Crafting techn	ical report	and proposals, Writing research papers with clarity	and pr	ecis	ion	, Eff	ective
email commun	nication in	echnical scenarios.					
Module N	0.3	Practical Presentation Skills		1() H	our	5
Designing im	pactful pr	sentations for technical subjects, Mastering publi	ic spea	akin	g t	ailo	red to
engineering to	pics, Role-	plays and mock presentations for practical learning.					
	effective	ffective Team Communication and Collaboration team communication, Conflict resolution and pro- nances in global engineering teams.				ours uette	

Module No. 5	Personal Branding and Professional Networking for Engineers	9 Hours
E I	g LinkedIn profile, Creating industry-standard resumes ar discussions for placement readiness.	nd cover letters, Mock

Text Books

1. Raman, M. Technical Communication: Fourth Edition, Oxford University Press, 2022

References

- 1. Strunk, William, E.B. The Elements of Style, Fourth Edition. United States, Pearson, 2000
- 2. Lumsden, Gay, communicating in Groups and Teams: Sharing Leadership, Seventh Edition. United States, Wadsworth Publishing, 2010
- 3. Reynolds, Garr. Presentation Zen: Simple Ideas on Presentation Design and Delivery, Second Edition, United States, New Riders, 2011
- 4. Rizwi, M. Ashraf. Effective Technical Communication. New Delhi, Tata McGraw-Hill Education, 2011
- 5. Pfeiffer, William Sanborn. Technical Communication: A Practice Approach. United States, Pearson, 2009

	Theory	100%
	Continuous Assessment Test-1	15%
	Continuous Assessment Test-2	15%
	Digital Assignment/Quizzes (Min)	20%
Mode of Evaluation	Final Assessment Test	50%
Prepared by	Ms. Damini Sharma	
Recommended by the		
Board of Studies on		
Date of Approval by the		
Academic Council		

Course Code	: MTSE502		Title: Quantitative Aptitude and	TPC	3	0	3
Version No.		Problem	n-Solving Strategies			Ŭ	
Course Pre-r Co-requisites		1.0 None					
Anti-requisit		None					
Objectives:		 Strengthen critical thinking and problem-solving skill essential for technical roles and competitive exams. Develop effective problem-solving strategies to tackle numerical and logical reasoning questions. Enhance speed and accuracy in solving quantitative problems under time constraints. Build analytical skills to interpret and solve real-work- placement scenarios. Master shortcuts and techniques for solving common placement aptitude questions efficiently. 			ckle tive orld		
		I	CO-PO Mapping	J			
Course Outcomes		Course Outcome Statement					
CO1	doubt resol	Improve problem-solving, time management in key topics, with interactive doubt resolution for better understanding.					
CO2	-		inderstanding of concepts, effective lysis, and doubt clarification.	shortcu	ıts,	logi	cal
CO3	Improve pr test perform		solving speed, effective doubt resolut	ion, and	l en	hanc	ed
CO4	-		logical reasoning, pattern recognition				
CO5	Enhance pr	roblem-s	solving skills, pattern recognition, logi	ical thin	king	5	
			TOTAL HOURS OF IN	STRUC	TIO	NS:	45
Module No. 1	Speed M Engineer		tics and Shortcut Techniques for		9	Hou	rs
Basic Calcul solving, Dou	-		Basics, Speed math and shortcut met	thods fo	or p	roble	em-
Module No. 2	Module No. 2Advanced Arithmetic and Analytical Thinking9 Hour			rs			
		0	ra, percentage problems, profit and los l tackling word problems using algebr	-			ios,
Module No. 3	Time an	d Work	Optimization		9	Hou	irs
			iency, Work Rate Analysis and Wag arification, Class Progress Evaluation	-			Pipe
Module No. 4	Ranking	s, Sequ	ences, and Series Problem Solving		9	Hou	rs

Understanding Coding and decoding, Rankings and Sequences, Seating arrangement, Pattern Recognition.						
Module No. 5 Critical	Thinking and Personality Development	9 Hours				
Critical Thinking, Probl of patterns, Analytical R	em Solving and personality development, Vis easoning.	sual Representation				
Text Books						
1. Aggarwal, R. S. Limited, India.	(20024). Quantitative Aptitude. Revised H	Edition: S. Chand				
References						
CAT. India: McC	 How to Prepare for Quantitative Graw Hill Education. Fast Track Objective Arithmetic. India: A 	1				
Course Type	Embedded Theory & Lab (ETL)					
	Theory	75%				
	Continuous Assessment Test-1	15 %				
Mode of Evaluation	Continuous Assessment Test -2	15%				
Noue of Evaluation	Digital Assignments/Quizzes (Min)	20%				
	Final Assessment Test	50%				
	Laboratory	25%				
Prepared by	Ms. Vibhooti Sharma					
Recommended by the Board of Studies on						
Date of Approval by the Academic Council						

Course Code: RES701	Course Title: Research Methodology	L T P C 2 0 0 2	30 Hours
Version No.	1.0		
Course Pre- requisites/ Co- requisites/ anti- requisites (if any).	None		
Objectives:	 The aim of this course is 1. To impart knowledge about types and methods of research. 2. To formulate research problem, experiments/ survey and to analyz 3. To develop research reports. 	e and interpre	et data.
Expected Outcome	 At the end of this course the students will be able to apply his knowledge i Identification, experimentation and solving research problems. Reporting research data and preparation of proposals for research 		
Module No. 1	Research Problem and Design	6 Hot	irs
	rch: Motivation, Significance, Objectives, Types and Methodology. Research: Literature Review, Problem definition and statement, and Research I	Design.	
	Data collection and Sampling Design	6 Hot	irs
	<i>a</i> : Primary Data, Secondary Data; Procedure Questionnaire – Survey and Exeriments – Sampling Merits and Demerits – Control Observations-Procedures		
Module No. 3 T	echnical Report Writing	6 Hoi	irs
and dissuasion,	t organization, part of technical report: Title, Abstract, Keywords, Introduction, Conclusion and Bibliography. Technical reporting writing for Research, Budget and Time-plan.		
Module No. 4	Fools for Technical Report and Presentation	4 Hou	irs
	cal Designs, Data collection and Analysis, Creating Bibliography database, and	Presentation	
Module No. 5	Research Publications and Ethics	8 Hot	irs
Preparation of p application, Pat Fabrication and Salami impalas	ing- types of publications- format, structure and styles- Scientific tables, grap presentations and posters. Research grants – National and International agence enting, IPR. Ethics in Research: A brief introduction to ethics Scientific con- l other forms of misconduct affecting the truth claims of scientific finding and duplicate publication – The investigation and punishment of scientific mis-	ies – Writing duct and misc s. Authorship	for grant conduct – issues –
	K. and Gaurav Garg. Research Methodology - Methods and Techniques.5 al Publishers 1 January 2023, New Delhi.	th Edition N	New Age

References

- 1. Singh, Y.K. 2007. Fundamentals of Research Methods and Statistics. New Age International (P) Ltd, New Delhi.
- 2. Forthofer, R.N. Lee, E.S. and Hernandez, M. 2007. Biostatistics: A Guide to Design, Analysis and Discovery.
- 3. Montgomery, Douglas C. 2007. Design and Analysis of Experiments, Wiley India.
- 4. Le, C.T. 2003. Introductory Biostatistics. Wiley Inter Science.
- 5. Prahlad Mishra, 2015. Business Research Methods, Oxford University Press.
- 6. <u>https://www.microsoft.com/en-in</u>
- 7. <u>https://ctan.org/?lang=en</u>
- 8. https://www.originlab.com/
- 9. https://in.mathworks.com/products/matlab.html
- 10. https://www.coreldraw.com/

11. <u>https://www.adobe.com/</u>

Mode of Evaluation	Theory	100%
	Examination-1 15	
	Examination-2 15	
	Assignment/Quiz 20	
	Final Assessment Test 50	
Prepared by		
Recommended by the		
Board of Studies on		
Date of Approval by the Academic		
Council		

Course			Title:Quality System and	TPC	3	0	3
Code:MTME	Reliability Engineering						
Version No.		1.0					
Course Pre-r Co-requisites		None					
Anti-requisit	es (if any).	None					
Objectives:		 To provide a foundational understanding of quality concepts and their significance in engineering an manufacturing environments. To develop knowledge of statistical quality control methods and process improvement tools. To introduce key concepts in reliability engineering including failure modes, reliability modeling, an maintainability. To familiarize students with international quality standards, audit processes, and certification systems. To enable the application of quality and reliability engineering tools in real-world industrial problems an decision-making. 			and trol ing, and lity		
			CO-PO Mapping				
Course Outcomes			Course Outcome Statement				
CO1		1	nciples of quality and distinguish tapproaches.	betwee	n di	ffere	ent
CO2		istical qu	ality control techniques for proce	ess moni	toriı	ng a	nd
CO3	Analyze a	nd mode	el system reliability using approp y distributions.	riate ma	ther	natio	cal
CO4	Utilize reli	ability d	esign tools such as FMEA, FTA, and applications.	and acce	lerat	ed 1	ife
CO5	Evaluate ar	nd implei	nent quality standards and systems h audits and continuous improveme				
			TOTAL HOURS OF IN		-		5
Module No. 1	Introduc Systems	tion to (Quality Concepts and Managemer	it 🔤	9H	ours	5
evolution of such as De Introduction planning.	quality from ming, Juran to quality	inspecti , and C manager	ality, quality control versus quality on to Total Quality Management (T Crosby are discussed along with nent principles cost of quality, a	QM). Qu core p nd strate	uality hilos egic	y Gu soph qua	irus ies. lity
Module No. 2	Statistica	al Qualit	y Control and Process Monitorin	5	9 H	lour	S

Introduction to statistical methods used in quality control. Topics include variable and attribute control charts, process capability indices (Cp, Cpk), sampling inspection, and operating characteristic (OC) curves. The design of control charts for mean, range, proportion, and defects per unit are explained. Case studies of quality improvement using SPC are included. **Module No. 3** Reliability Engineering Fundamentals 9 Hours Concept of system reliability, maintainability, and availability. Topics include failure data analysis, probability distributions (exponential, Weibull), hazard rate functions, reliability block diagrams, and system reliability calculations for series, parallel, and complex systems. Preventive maintenance and failure mode effects analysis (FMEA) are discussed in depth. **Module No. 4** | Design for Reliability and Advanced Tools 9 Hours Design considerations to improve reliability, including redundant design, derating, and stress-strength analysis. Tools such as Fault Tree Analysis (FTA), Failure Mode and Effects Criticality Analysis (FMECA), and accelerated life testing are introduced. Techniques for root cause analysis and reliability-centered maintenance (RCM) are emphasized. Module No. 5 QualitySystems, Standards, and Industrial Applications 9 Hours Implementation of quality systems in industry, including ISO 9001, ISO 14001, Six Sigma, and Lean Quality initiatives. Auditing procedures, documentation, internal and external audits, and third-party certifications are discussed. Industry case studies showcase successful deployment of quality and reliability principles. Text Books 1. Douglas C. Montgomery, *Design and Analysis of Experiments*, Publisher: Wiley. 10th Edition, 2022 2. Charles E. Ebeling, An Introduction to Reliability and Maintainability Engineering, Publisher: Waveland Press. 3rd Edition, 2022 3. K.S. Trivedi, Probability and Statistics with Reliability, Queuing, and Computer Science Applications, Publisher: Wiley. 3rd Edition, 2022 References 1. B.S. Dhillon, Engineering Systems Reliability, Safety, and Maintenance: An Integrated Approach, Publisher: CRC Press. 2nd Edition, 2022 2. Hoang Pham, Quality and Reliability Engineering, Publisher: Springer. 2nd Edition, 2023 3. Amitava Mitra, Fundamentals of Quality Control and Improvement, Publisher: Wiley. 5th Edition, 2023 Theory Only (TH) **Course Type** 100% Theory Continuous Assessment Test-1 15 % **Mode of Evaluation** Continuous Assessment Test -2 15% Digital Assignments/Quizzes (Min) 20%

	Final Assessment Test	50%
Prepared by	Er. Anikate Gupta	
Recommended by the		
Board of Studies on		
Date of Approval by		
the Academic Council		

Course Code: MTME506Course Title: Innovative Tool Design for Modern ManufacturingTPC32						4		
		Modern Manufacturing 10						
Version No.		.0						
Course Pre-requisi requisites	ites/ Co-	lone						
Anti-requisites (if a	any). N	lone						
1. To understand the principles of innovative tool d high-precision manufacturing. 2. To study the role of advanced materials and coat performance. 3. To apply modern design techniques including CA and simulation in tool design. 4. To explore novel tool systems for micro/nano manufacturing and high-speed machining.		ting CAD	s in t /CAl	tool				
		5. To enhance problem-solving skills through industry- oriented tool design projects.						
Course Outcomes			Course Outcome Statement					
C01	-	Explain the fundamentals of innovative tool design principles used in modern manufacturing.						
CO2	Select suita	ble to	ool materials and coatings for specific ap	plication	ns.			
CO3	Develop an	d sim	ulate tool designs using CAD/CAM tool	s.				
CO4	Design tool	ls for	micro/nano machining and high-speed op	peration	s.			
CO5	Evaluate an needs.	nd opt	imize tool performance based on real-tin	ne manu	fact	uring	5	
			TOTAL HOURS OF I	NSTRU	JCT	ION	: 45	
Module No. 1 F	Fundamenta	ls of '	Fool Design and Innovation		9 H	ours	5	
Principles of tool	tion in cuttir		cutting tools, form tools, tool geometry, ol materials, productivity enhancement,		-		-	
Principles of tool formation, innova modular tooling sy	tion in cuttir	ng too	ol materials, productivity enhancement,		ndar		ion,	
Principles of tool formation, innova modular tooling sy Module No. 2 T Tool steels, cemen	tion in cuttir ystems. Fool Materia ated carbides (TiN, TiAIN	ng too I <mark>ls an</mark> , cera I, DL	d Coatings mics, cermets, CBN and PCD tools, tool C), deposition methods (CVD, PVD), na	tool sta	ndar 8 H	dizat ours	ion,	

Role of CAD/CAM in tool design, 2D and 3D modeling of cutting tools, tool path generation, integration with CNC, reverse engineering, finite element analysis (FEA) of tool performance, software tools (ANSYS, SolidWorks, MasterCAM), rapid prototyping in tooling.

Module No. 4	Tools for Advanced Manufacturing Techniques	9 Hours				
Eco-friendly materials and processes, Lifecycle analysis and recycling of tools, Success stories in						
automotive, aero	automotive, aerospace, and medical industries, Emerging trends in tool design and					
manufacturing,	manufacturing, Role of AI, IoT, and machine learning in tool design, Smart tools and sensors for					
Industry 4.0.						

Module No. 5	Tool Evaluation and Case Studies	9 Hours
--------------	----------------------------------	---------

Tool failure analysis, tool testing standards, surface integrity, vibration and chatter in tooling, optimization techniques, case studies from aerospace, automotive, biomedical industries, design for sustainability and cost-effectiveness in tooling.

Text Books

- 1 Stephen F. Krar & Arthur Gill, *Tool Design*, 6th Edition, Cengage Learning, 2021.
- **2 Prakash Hiralal Joshi**, *Tooling Data: Innovative Tool Design*, 2nd Edition, McGraw Hill Education, **2022**.

Reference Books

- 1 Donaldson, Lecain & Goold, Tool Design, 5th Edition, Tata McGraw Hill, 2022.
- 2 G.R. Nagpal, *Tool Engineering and Design*, Revised Edition, Khanna Publishers, 2023.
- **3** Vukota Boljanovic, *Sheet Metal Forming Processes and Die Design*, 3rd Edition, Industrial Press, **2024**.

Lab Experiments

- 1. Study and analysis of various cutting tool geometries using tool signature and design charts.
- 2. **3D modeling of single-point cutting tool** using CAD software (e.g., SolidWorks/CATIA).
- 3. Design and simulation of a form tool for turning operation using CAM software.
- 4. Tool path generation for milling and drilling tools using MasterCAM/UG-NX.
- 5. **Finite Element Analysis (FEA)** of tool under cutting forces using ANSYS or similar tools.
- 6. Design and modeling of a modular tool holder system using CAD software.
- 7. **Material selection and coating strategy** for high-speed machining tools using material databases.
- 8. **Simulation of tool wear and thermal behavior** during machining using simulation tools.
- 9. Development of a micro cutting tool model for micro-machining applications.
- 10. Reverse engineering of an existing cutting tool using a 3D scanner and CAD software.
- 11. Design and fabrication of a jig/fixture using design principles for CNC machining.
- 12. Additive manufacturing (3D printing) of a custom-designed fixture/tool prototype.

- 13. Tool failure analysis and wear pattern inspection using a toolmakers' microscope or SEM images.
- 14. Measurement of cutting forces during turning/milling operations using a dynamometer.
- 15. **Case study-based project on innovative tool design** for a specific industry application (aerospace/automobile/biomedical).

Course Type	Embedded Theory & Lab	
	Theory	75%
	Continuous Assessment Test-1	15%
Mode of Evaluation	Continuous Assessment Test-2	15%
Nioue of Evaluation	Digital Assignment/Quizzes (Min)	20%
	Final Assessment Test	50%
	Laboratory	25%
Prepared by	Dr. Mandeep Kumar	
Recommended by the		
Board of Studies on		
Date of Approval by		
the Academic Council		

Course Code:MTME507	Course Title: Production Planning & ControlTPC303		
Version No.	1.0		
Course Pre-requisites/ Co-requisites	None		
Anti-requisites (if any).	None		
Anti-requisites (if any).None1.To understand the fundamentals of production planning control and its role in optimizing manufacturing procession2.To develop skills in material requirements planning (I and manufacturing resource planning (MRPII) for effor resource management.0bjectives:3.3.To apply Just-In-Time (JIT) and Lean Manufact 			

Course Outcomes	s Course Outcome Statement					
CO1	Understand the principles and framework of production plan control in manufacturing systems.	Understand the principles and framework of production planning and control in manufacturing systems.				
CO2	Apply forecasting methods and capacity planning to predict production activities.	and plan				
CO3	CO3 Analyze and implement inventory control systems for efficient resource utilization.					
CO4	Utilize scheduling techniques for optimizing production pro	cesses.				
CO5	Evaluate and integrate advanced production control strategies like JIT, Lean Manufacturing, and ERP in industrial environments.					
	TOTAL HOURS OF INSTRUC	TIONS: 45				
Module No. 1	Introduction to Production Planning and Control	9 Hours				
	roduces the fundamental concepts of production planning and					
	manufacturing, and the objectives of production managem	-				
include product	ion systems, the planning and control functions, and the sig	nificance of				
inventory management. The module also covers demand forecasting and master production						
scheduling (MF						
	Material Requirements Planning (MRP) and	9 Hours				
	Manufacturing Resource Planning					
The second module delves into the intricacies of material requirements planning (MRP)						
and manufacturing resource planning (MRPII). The students will learn the MRP process,						
its types, and the importance of accurate data input for successful MRP execution. This						
module also covers capacity planning, bill of materials (BOM), and the MRP systems in						
modern manufacturing.						

Module No. 3 Just-In-	Fime (JIT) and Lean Manufacturing	9 Hours					
This module focuses on the concepts of Just-In-Time (JIT) production and lean							
manufacturing systems.	manufacturing systems. Students will explore JIT techniques such as Kanban, pull						
systems, and waste reduction strategies. The module highlights the importance of reducing							
inventory, improving pro	oduction flow, and enhancing product qu	ality while minimizing					
waste.							
Module No. 4 Advance	d Scheduling Techniques	9 Hours					
The final module cover	s advanced techniques for production se	cheduling and control,					
including finite and infin	ite loading, Gantt charts, and critical path	methods (CPM).					
Module No. 5 Perform	ance Evaluation	9 Hours					
Students will also stud	y performance metrics for evaluating	production efficiency,					
including capacity utiliza	tion, throughput, and lead time.						
Text Books							
	M.K. Malhotra, and L.P. Ritzman, Op	erations Management					
5	pply Chains, Pearson Education, 12th Edi	U					
	yay, Production Planning and Control:						
Learning, 2021.	,	,,					
0	uction and Operations Management, McG	raw Hill Education, 5th					
Edition, 2019.		,					
References							
1. W.J. Hopp and M	I.L. Spearman, Factory Physics, McGraw	Hill, 2021.					
2. J. Heizer, B. Re	nder, and C. Munson, Principles of Op	perations Management,					
Pearson Educatio	n, 2021.						
	and K. Shridhara Bhat, Production and O	perations Management,					
Himalaya Publish	ing House, 2019.						
Course Type	Theory (TH)						
	Theory	100%					
	Continuous Assessment Test-1	15 %					
Mode of Evaluation	Continuous Assessment Test -2	15%					
	Digital Assignments/Quizzes (Min)	20%					
	Final Assessment Test	50%					
Prepared by	Dr. Shivinder Singh						
Recommended by the							
Board of Studies on							

	0 54		r – –						
Course Code:	Course Title:	ТРС	2	Δ	3				
MTME503	Operation research for mechanical engineers	IPC	3	0	3				
Version No.	1.0								
Course Pre-requisites/ Co-requisitesNone									
Anti-requisites (if any).	s (if any). None								
 Understand the fundamentals of optimization and linear programming for engineering applications. Apply dynamic and non-linear optimization techniques for decision-making in complex mechanical systems. Analyse queuing systems and evaluate their performance in manufacturing environments. Explore the experimental and mathematical methods for real-world industrial optimization problems. 									
	TOTAL HOURS OF INS	TRUCT	ION	NS: 4	5				
Module No. 1 Linear l	Programming and its Applications		12	Ηοι	ırs				
Infeasible Solutions, For Planning, Inventory M	Theory of Simplex Solution, Alternative Optimal Solution, Unbounded Solutions, Infeasible Solutions, Formulation of LP Models for: Production Scheduling, Network Planning, Inventory Maintenance, Capital Budgeting, Two-Phase Method, Revised Simplex Method, and Dual Simplex Method, Transportation and Assignment Models,								
Module No. 2 Dynami			9 F	Iou	rs				
inventory levels, or reso using Dynamic Program reduce lead time, or opti in Industrial Systems	variables that need to be optimized, such as pro- urce allocation. Optimisation of Non-Linear C uming: optimization processes, minimize costs mize resource utilization. Applications of Dyna	bjectiv s, maxi	e Fu mize	incti e pro	ons ofit,				
Module No. 3 Non-Lin	ear Optimisation and Queuing Models		8 H	lour	S				
Non-Linear Optimisation Models, Unconstrained Non-Linear Objective Functions, Quadratic Programming, Queuing Theory: Single and Parallel Channels' Limited and Unlimited Service Systems, Bulk Input, Bulk Service, Priority Queue Discipline									
Module No. 4 Heuristi	c Models, and Optimisation Techniques		10	Hou	ırs				
Heuristic Models: Need for Heuristic Programming, Examples of Heuristic Models for: Travelling Salesman Problem, Facility Design, Assembly Line Balancing Optimisation Techniques: Classical Methods, Non-Linear Optimisation, Unconstrained and Constrained Optimisation, Lagrangian Multiplier Method parameters for process efficiency,Module No. 5Multi-Criteria Decision Making and Case Studies6 Hours									
MCDM Methods: AHP, TOPSIS, ELECTRE Applications in Product Design,									
Manufacturing Strategy, Integrated Optimization Approach and Recent Trends in OR.									
 Frederick S. Hil Research, 11th ed M. W. Carter, C 	erations Research, Krishna Prakshan, 2023 lier, Gerald J. Lieberman, et al., Introductio lition Mc Graw Hill, 2024 Operation Research; A practical introduction, 2								
press, 2023.									

References

- 1. **G. Srinivasan**, Operations Research: Principles and Applications, Prentice Hall India Pvt., Limited, 2021.
- 2. Richard J Boucherie, Operations Research, World Scientific Connect, 2021.
- 3. R. Panneerselvam, Operation research, PHI publication, 3rd edition, 2023.

Course Type	Theory Only (Th)	
	Theory	100%
	Continuous Assessment Test-1	15 %
Mode of Evaluation	Continuous Assessment Test -2	15%
	Digital Assignments/Quizzes (Min)	20%
	Final Assessment Test	50%
Prepared by	Dr. Kamaljit Singh	
Recommended by the		
Board of Studies on		
Date of Approval by		
the Academic Council		

Course Code: MTME509		Course	Title: Product Lifecycle			0			
			gement	TPC	3	0	3		
Version No.		1.0							
Course Pre-requisites/ Co-requisitesNone									
Anti-requisites (if any). None									
Objectives:		2. 3. 4.	To introduce the concept of 1 Management (PLM) and its role in a To equip students with knowledge tools, and technologies. To analyze the integration of development and business strategies To explore sustainability, collaboration in the context of PLM To provide insights into the future of	modern of PLM PLM s. innovat	indu I pro in ion,	ustri oces proc	es. ses, luct and		
		5.	its applications in Industry 4.0.						
Course Outcomes			Course Outcome Statement						
CO1		Understand the principles and importance of Product Lifecycle Management.							
CO2	Analyze	e produc	t data and workflows using PDM too	ols.					
CO3	Evaluate	e and ap	ply various PLM tools and software	platforr	ns.				
CO4	Identify optimiza		del different stages of product lifecy	cle for					
CO5	Demons	strate the	e application of PLM strategies throu	gh real-	wor	ld			
	case stu	dies.							
			TOTAL HOURS OF INS	TRUC	ΓΙΟ	N: 4	15		
Module No. 1	Introduct	ion to P	LM		8 H	our	S		
	ure, digital	thread,	importance of PLM, lifecycle phases , product data and process integrat P.						
Module No. 2	Product E	Data Ma	nagement (PDM)		9 H	our	s		
PDM systems,	PDM funct	tions, da	ta vaults and vaulting, version and re	evision of	cont	rol,			
			ructure, configuration management, v	vorkflo	W				
			on, case studies in PDM usage.						
Module No. 3	PLM Too	ls and T	Technologies		9 H	lour	S		

CAD/CAM/CAE integration in PLM, BOM management, collaborative design tools, visualization and rendering tools, database management systems for PLM, interoperability standards (STEP, IGES, XML), cloud-based PLM solutions, IoT in PLM.

Module No. 4Lifecycle Phases and Strategies10 HoursConceptual design phase, detail design, prototyping, manufacturing planning, service and
maintenance, end-of-life strategies, sustainability and circular economy in PLM, PLM
metrics and KPIs, role of digital twin and digital manufacturing.10 Hours

Module No. 5PLM Implementation and Case Studies9 HoursPLM implementation methodology, system architecture and deployment, organizational
challenges, charge management, ROI calculation, PLM in automotive, aerospace,
consumer products, future trends in PLM, case studies from industries.9 Hours

Text Books

- 1. John Stark, Product Lifecycle Management: Driving the Next Generation of Lean Thinking, 3rd Edition, Springer, 2023.
- 2. Michael Grieves, *Product Lifecycle Management: Driving the Next Generation of Lean Thinking*, 2nd Edition, McGraw Hill Education, **2021**.

Reference Books

- 1. Antti Saaksvuori & Anselmi Immonen, *Product Lifecycle Management*, 3rd Edition, Springer, 2022.
- 2. John Stark, *Product Lifecycle Management: 21st Century Paradigm for Product Realisation*, 4th Edition, Springer, **2021**.
- 3. **Debasish Sarkar**, *Product Lifecycle Management: Paradigm for 21st Century Product Realisation*, 2nd Edition, CRC Press, **2024**.

Course Type	Embedded Theory	
	Theory	100%
	Continuous Assessment Test-1	15%
Mode of Evaluation	Continuous Assessment Test-2	15%
	Digital Assignment/Quizzes (Min)	20%
	Final Assessment Test	50%
Prepared by	Dr. Mandeep Kumar	
Recommended by the		
Board of Studies on		
Date of Approval by		
the Academic Council		

Code:MTME510 and Analysis TPC 3 2 Version No. 1.0 Course Pre-requisites/ Co-requisites None Anti-requisites (if any). None 1. To provide fundamental knowledge of the prin and mechanics of metal forming processes. 2. To familiarize students with various conventiona advanced metal forming techniques. 3. To develop the ability to analyze and predic deformation behaviour of materials under var forming conditions. 4. To introduce process parameters, their optimiz and their impact on forming processes. Course Course Course Course Outcome Statement	al and ct the various			
Course Pre-requisites/ Co-requisites None Anti-requisites (if any). None 1. To provide fundamental knowledge of the prin and mechanics of metal forming processes. 2. To familiarize students with various conventiona advanced metal forming techniques. 3. To develop the ability to analyze and predic deformation behaviour of materials under various forming conditions. 4. To introduce process parameters, their optimiz and their impact on forming processes. Course	al and ct the various			
Co-requisites None Anti-requisites (if any). None 1. To provide fundamental knowledge of the prin and mechanics of metal forming processes. 2. 2. To familiarize students with various conventiona advanced metal forming techniques. 3. 3. To develop the ability to analyze and predict deformation behaviour of materials under various forming conditions. 4. 4. To introduce process parameters, their optimiz and their impact on forming processes. CO-PO Mapping	al and ct the various			
1. To provide fundamental knowledge of the prin and mechanics of metal forming processes. 2. To familiarize students with various conventiona advanced metal forming techniques. 3. To develop the ability to analyze and predic deformation behaviour of materials under various conditions. 4. To introduce process parameters, their optimiz and their impact on forming processes. CO-PO Mapping	al and ct the various			
and mechanics of metal forming processes. 2. To familiarize students with various conventional advanced metal forming techniques. 3. To develop the ability to analyze and predice deformation behaviour of materials under varion forming conditions. 4. To introduce process parameters, their optimize and their impact on forming processes. CO-PO Mapping	al and ct the various			
Course				
Course				
('Anna Antaama Statamant				
Outcomes				
CO1 Explain the fundamental principles and mechanics of cold and hot forming.	1 1			
CO2 Classify and describe Theory of Elasticity and Plasticity.	Classify and describe Theory of Elasticity and Plasticity.			
CO3 Evaluate the influence of Slip Line Field Theory on forming processes	Evaluate the influence of Slip Line Field Theory on forming processes.			
CO4 Analyze the deformation behaviour of materials under Sheet metal				
forming conditions using analytical methods.	forming conditions using analytical methods.			
CO5 Analysis of Drawing and bending processes				
TOTAL HOURS OF INSTRUCTION	NS: 45			
Module No. 1 Introduction 9 Hours				
Introduction: Advantages of metal forming, cold and hot forming, various metal forming				
processes.Basics of metal forming - Mohr's circle - isotropic elasticity - yield thee	ories -			
plastic stress strain relationship - plastic work - the principle of normality - incren	mental			
plastic strain.				
Module No. 2 Theory of Elasticity and Plasticity 9 Hot				
Review of theory of elasticity, Stress tensor, stress transformations, principal str				
differential equations of equilibrium, Plastic instability – strain hardening / work				
hardening – strengthening mechanisms – cold working and recrystallization.				
Module No. 3Slip Line Field Theory9 Hours				
Slip Line Field Theory, Incompressible two-dimensional flow, slip lines, equilibrium equations (referred to slip lines), Henkey's theorems, hodograph, simplest slip line fields, application in forming processes – extrusion and forging.				
Module No. 4Sheet Metal forming and Analysis9 Ho	Module No. 4Sheet Metal forming and Analysis9 Hours			

- Bending theory, Cold Rolling theory - Hill's anisotropic plasticity theory - Hill's general yield theory, CAD/CAM applications in Extrusion, Forging and sheet metal Forming - Localized necking in biaxial stretching. Sheet Forming Analysis and Sheet-Metal Formability Tests - Elements Used in SHEET-S and SHEET-3, General Considerations, Consistent Full Set Algorithm, Performance of SHEET-3 in International Benchmark Tests, Meshing and Remeshing

Module No. 5	Drawing and bending processes and Analysis	9 Hours

Deep-drawing - analysis to correlate the initial and final dimensions of the job, estimation of the drawing force, defects, Bending - determination of work load, estimation of spring back, Punching and blanking – mode of metal deformation and failure, deformation model and fracture analysis, determination of working force, Friction and Lubrication in metal forming.

Text Books

- 1. Huda, Zainul, Metal Forming Processes: Fundamentals, Analysis, Calculations, Springer, 2024
- 2. Kopec, Mateusz, and Politis, Denis, Advances in Sheet Metal Forming Processes of Lightweight Alloys, MDPI, 2023.

References

- 1. Kakandikar Ganesh Marotrao, Anupam Agrawal, D. Ravi Kumar, Metal Forming Processes: Developments in Experimental and Numerical Approaches, CRC Press, 2023.
- **2.** Amrut Mulay, Swadesh Kumar Singh, Andrzej Kocanda, Analysis and Optimization of Sheet Metal Forming Processes, CRC Press, 2024.
- 3. Surender Kumar, Technology of Metal Forming Processes, PHI Learning, 2024

List of Exercise

- 1. To determine the compressive strength, yield stress, and ductility of materials under compressive loading
- 2. o evaluate the tensile properties of materials, including yield strength, ultimate tensile strength, and elongation.
- 3. To measure the toughness of materials and assess their resistance to fracture under high-rate loading.
- 4. To study the effects of rolling on metal thickness reduction, surface finish, and material properties.
- 5. To analyze the deformation, force requirements and material behaviour during the extrusion process.
- 6. To understand the impact of forging on material properties, including grain structure and mechanical characteristics.
- 7. To study the wire drawing process and determine its effect on the material's mechanical properties and geometric characteristics.
- 8. To evaluate the formability of materials during deep drawing and the effect of blank holder force, lubrication, and punch speed.
- 9. To understand the shearing and punching process and evaluate the shear strength and cut quality of metal sheets.
- 10. To investigate the bending process and measure the degree of spring back that occurs after unloading the material.
- 11. To study the hydro forming process for producing complex shapes and the effect of internal fluid pressure on material behaviour.
- 12. To examine the super plastic forming process and evaluate material deformation under high temperatures and strain rates.
- 13. To understand the effects of combined thermal and mechanical treatments on the material's microstructure and mechanical properties.
- 14. To simulate metal forming processes using Finite Element Analysis (FEA) software and compare experimental results with simulations.
- 15. To measure the hardness of metal samples before and after forming processes to evaluate material property changes.

Course Type	Embedded Theory & Lab (ETL)	
	Theory	75%
	Continuous Assessment Test-1	15 %
Mada - CE	Continuous Assessment Test -2	15%
Mode of Evaluation	Digital Assignments/Quizzes (Min)	20%
	Final Assessment Test	50%
	Laboratory	25%
Prepared by	Kushdeep Rana	
Recommended by the		
Board of Studies on		

Course Code:	Course Title:				
MTME511	Design and Analysis of Experiments	TPC	3	2	4
Version No.	Version No. 1.0			1	
Course Pre-requisites/ Co-requisites	None				
Anti-requisites (if any).	None				
Objectives:	 Understand the fundamental principles and terminologies of experimental design in engineering applications. Develop and analyse various factorial and fractional factorial experimental designs for identifying significant factors. Apply optimization techniques to model, analyse, and optimize engineering processes. Explore advanced experimental design strategies including for complex and uncertain systems. 			onal cant and	
	TOTAL HOURS OF INST	FRUCT	ION	IS: 4	5
Module No. 1 Introduc	ction to Design of Experiments			lour	
engineering and research. Basic Terminologies: Factors, levels, responses, experimental units, treatments, randomization, replication, and blocking. Types of Experimental Designs: Overview of Statistical Inference: Hypothesis testing, confidence intervals, and error analysis. Applications: Industrial applications and case studies. Module No. 2 Factorial Designs 5 Hours Introduction to Factorial Designs: Two-level factorial designs, Full Factorial Designs: General approach, analysis of variance (ANOVA), interpretation of results. Fractional					
	fractional designs, resolution, and application	IS.	<u> </u>	[01110	G
Module No. 3Analysis of Variance and Interaction Effects6 HoursAnalysis of Variance (ANOVA): Basic principles and ANOVA for factorial experiments.Interaction Effects: Understanding and interpreting interaction effects between factors.					
control, product optimiza	Case studies from various industrial applica	tions (e	e.g.,	qua	inty
	and Response Surface Methodology	Γ	15	Но	urs
Taguchi Methods for Robust Design: Philosophy, objectives, and applications. Orthogonal Arrays: Choosing orthogonal arrays, analysis, and interpretation. Signal-to-Noise Ratio. Introduction to Response Surface Methodology (RSM): Importance and application in optimization. Polynomial regression models and their applications in optimization. Central Composite Design (CCD), Box-Behnken Design (BBD): Structure, analysis, and applications.Module No. 5Advanced Topics in Design of Experiments11 Hours					
Fuzzy Logic in Experimental Design: Introduction to fuzzy sets, membership functions,					
fuzzy decision-making, and fuzzy inference systems. Application of fuzzy logic in					
modelling complex syste Text Books	ems with uncertainty in experimental design.				
1. N C Giri and M	1. N C Giri and M N Das, Design and Analysis of Experiments, New Age				
International Publishers, 2024.					
2. Jiju Antony , Des	sign of Experiments for Engineers and Scientis	sts, Else	evier	r, 20	23.

- 3. **Dr. R. Gangai Selvi**, Design of Experiment, Iterative International Publishers, 2023.
- 4. **Timothy J. Ross**, Fuzzy Sets and Fuzzy Logic with Engineering Applications, Wiley, 2021
- 5. **J. Paulo Davim**, Soft Computing Techniques for Engineering Optimization, CRC Press, 2021

References

- 1. **Dr. Sanghmitra Sharma, Dr. Najrullah Khan, et al.**, Analysis Of Variance And Design Of Experiments, Bluerose Publishers, 2023.
- 2. Valerii V Fedorov and Peter Hackl, Model Oriented Design of Experiments, Springer, 2024.
- 3. **R. Pundir and S.K. Pundir**, Fuzzy Sets and Their Applications, Anu Books, 2021

- 1. To explore statistical software like Minitab/ Design Expert for designing and analysing experiments.
- 2. To perform hypothesis testing (t-test, F-test) and confidence interval estimation for engineering datasets.
- 3. Conduct a full factorial (2² or 2³) experiment, analyze main and interaction effects, and visualize results.
- 4. Apply fractional factorial design (e.g., 2⁴⁻¹) to screen significant factors; understand design resolution.
- 5. Design and analyze an experiment using Taguchi's orthogonal arrays; calculate and interpret S/N ratios.
- 6. Design L9 orthogonal array through design of experiments
- 7. To conduct and analyse a complex randomized design experiment using one factor and multiple levels; interpret ANOVA results.
- 8. Perform one-way and two-way ANOVA and interpret the significance of factors and interactions.
- 9. Generate and interpret interaction plots and main effects plots using experimental data.
- 10. Use Central Composite Design (CCD) to model a second-order polynomial for response optimization.
- 11. Conduct Box Behnken Design (BBD) experiment and fit a response surface; analyse contour plots for optimization.
- 12. Implement a basic fuzzy logic model to handle uncertain parameters in an experimental setting.
- 13. Apply DOE principles to solve a real or simulated case study in machining, thermal processing, or materials testing
- 14. To design and analyse experimental data using Artificial Neural Networks (ANN).
- 15. Study Genetic algorithm (GA) to optimize a multi-factor experiment; compare results with traditional optimization.

Course Type	Embedded Theory and Lab (ETL)	
	Theory	75%
Mode of Evaluation	Continuous Assessment Test-1	15 %
	Continuous Assessment Test -2	15%
	Digital Assignments/Quizzes (Min)	20%
	Final Assessment Test	50%
	Laboratory	25%

Prepared by	Dr. Kamaljit Singh
Recommended by the	
Board of Studies on	
Date of Approval by	
the Academic Council	

Course Code: MTME512	Course Title: Optimization Strategies for Mechanical Systems	TPC	3	0	3
Version No.	1.0				
Course Pre-requisites/ Co-requisites	None				
Anti-requisites (if any).	None				
Objectives:	 To introduce the fundamental principles of optimization and their significance in solving engineering design problems. To develop an understanding of classical optimization methods, including techniques for both constrained and unconstrained problems. To provide the mathematical foundation of artificial neura networks and swarm intelligence for design problems. To expose students to evolutionary and metaheuristic algorithms, enhancing their ability to handle complex nonlinear, and multi-modal problems. To demonstrate selected optimization algorithm commonly used in static and dynamic applications. 		sign tion and ural stic lex,		

Course Outcomes	Course Outcome Statement
CO1	Understand the fundamentals and mathematical formulation of engineering optimization problems.
CO2	Apply classical optimization techniques to solve constrained and unconstrained problems.
CO3	Implement neural network technique to real world design problems.
CO4	Use numerical methods and tools for implementing optimization strategies.
CO5	Solve real-world mechanical system design problems using suitable optimization techniques.

TOTAL HOURS OF INSTRUCTIONS: 45

Module No. 1	Introduction to Optimization:	9 Hours
problems; sing	ts of optimization; engineering applications; types of ogle and multi-variable optimization; constraints and objective mechanical design problems as optimization problems.	1

Classical Optimization Techniques:

9 Hours

Introduction–Activation functions, types of activation functions, neural network architectures, Single layer feed forward network, multi layer feed forward network, Neural network applications. Swarm intelligence-Various animal behaviors, Ant Colony optimization, Particle Swarm optimization.

Module No. 3		Advanced Optimization Techniques:		9 Hours	
Multistage optimization–dynamic programming, stochastic programming Multi objective optimization Genetic algorithms and Simulated Annealing technique					
Module No. 4		Numerical Optimization Methods:9 Hours			
methods - N	ewton's n	 Hooke and Jeeves, Nelder-Mead simethod, quasi-Newton method; penalty B or Python for implementation. 			
Module No. 5		Applications in Mechanical Systems:		9 Hours	
systems; optin	nization of	ical components: shafts, springs, gears machining parameters; structural optimiz f analysis in engineering systems.			
Applica 2. Singh, Engine 3. Kumar, Optimiz	<i>utions</i> , 2nd M., and G <i>ering</i> , 1st H , R., and S	Reddy, J.N. – Optimization of Mechanical Edition (2023), Wiley. Supta, S. – Advanced Optimization Techr Edition (2022), Springer. Sharma, P. – Computational Methods for Edition (2021), Elsevier.	niques in N	Mechanical	
Engine 2. Patel, J Design 3. Lee, J.	<i>ering</i> , 1st E R., and D , 1st Editio , and Kim	Wang, H. – Multi-Objective Optimize Edition (2024), CRC Press. esai, M. – Metaheuristic Algorithms for n (2023), Springer. n, S. – Optimization Techniques for Stru- on (2022), Wiley.	r Mechanio	cal System	
Course Type	,	Theory (TH)			
Mode of Eval	uation	Theory Continous Assessment Test-1 Continous Assessment Test-1 Digital Assignments/Quizzes (Min) Final Assessment Test	100 15% 15% 20% 50%		
Prepared by		Dr. Sahil Sharma			
Recommende Board of Stud	lies on				
Date of Appro the Academic	-				

Course Code:MTME513	Course Title:Supply Chain Analytics and Optimization for Mechanical EngineersTPC323
Version No.	1.0
Course Pre-requisites/ Co-requisites	None
Anti-requisites (if any).	None
Objectives:	 To develop a foundational understanding of supply chain management (SCM) and the role of analytics in decision-making. To introduce key optimization models and tools used in designing efficient and responsive supply chains. To provide hands-on experience with analytical software and simulation tools for solving real-world supply chain problems. To enable students to analyze data-driven decisions in sourcing, production, inventory, and logistics from an engineering perspective. To bridge theoretical SCM concepts with practical implementation using digital technologies and analytical methodologies.
	CO_PO Manning

Course Outcomes	Course Outcome Statement					
CO1	Understand supply chain structures, analytics types, and performance metrics in manufacturing and distribution systems.					
CO2	Apply forecasting and inventory models to improve supply-demand matching and cost efficiency.					
CO3	D3 Design and optimize supply chain networks and transportation systems using mathematical modeling tools.					
CO4	Analyze production planning and sourcing strategies using analytical and decision-making frameworks.					
CO5	CO5 Integrate simulation, digital tools, and emerging technologies into supply chain planning and execution.					
TOTAL HOURS OF INSTRUCTIONS: 45						

Module No. 1	Introduction Analytics	to Sup	ply Chain	Management	and	9 Hours
Introduction to the concept, structure, and components of supply chains. Topics include supply chain strategy, the bullwhip effect, supply chain drivers, and performance metrics. Basics of descriptive, predictive, and prescriptive analytics in the supply chain context.						
Module No. 2	Forecasting an	nd Invent	ory Optimiz	zation		9 Hours

Quantitative forecasting methods including moving averages, exponential smoothing, ARIMA, and machine learning models for demand forecasting. Inventory models such as EOQ, newsvendor model, and multi-echelon inventory systems are discussed. Real-world data analysis examples are included.

Module No. 3Network Design and Transportation Optimization9 HoursSupply chain network design including facility location models, hub-and-spoke
networks, and vehicle routing problems (VRP). Optimization models for transportation,
distribution, and logistics planning using linear and integer programming are
emphasized.9 Hours

 Module No. 4
 Production Planning and Sourcing Analytics
 9 Hours

Aggregate planning, master production scheduling, materials requirement planning (MRP), and lean systems. Sourcing strategies, supplier selection models, contract optimization, and game theory applications in procurement are discussed with industry examples.

Module No. 5Emerging Technologies and Simulation in Supply9 HoursChains

Simulation modeling using software (e.g., Arena, AnyLogic), digital twins, and the application of AI, IoT, and blockchain in modern supply chains. Case studies from manufacturing and logistics domains are used to demonstrate integration of analytics into decision-making processes.

Text Books

- 1. Simchi-Levi D., Kaminsky P. & Simchi-Levi E., *Designing and Managing the Supply Chain*, Publisher: McGraw-Hill Education. 4th Edition, 2022
- 2. S. Chopra & P. Meindl, *Supply Chain Management: Strategy, Planning, and Operation*, Publisher: Pearson Education. 8th Edition, 2023
- 3. Gerald Feigin, Supply Chain Planning and Analytics: The Right Product in the Right Place at the Right Time, Publisher: McGraw-Hill Education. 2nd Edition, 2022

References

- 1. Sunil Sharma, *Supply Chain Analytics: Concepts, Techniques, and Applications*, Publisher: Sage Publications. 1st Edition, 2023
- 2. Nada R. Sanders, *Supply Chain Management: A Global Perspective*, Publisher: Wiley. 3rd Edition, 2022
- 3. Michael Watson et al., *Supply Chain Network Design: Applying Optimization and Analytics to the Global Supply Chain*, Publisher: Pearson FT Press. 2nd Edition, 2022

- 1. Demand forecasting using moving average and exponential smoothing in Excel.
- 2. Implementation of ARIMA model for time-series forecasting using Python.
- 3. EOQ and reorder point calculations for multi-item inventory systems.

- 4. Simulation of single-echelon inventory system with variable lead time.
- 5. Optimization of warehouse location using linear programming in Excel Solver.
- 6. Solving transportation problems using Vogel's approximation and MODI method.
- 7. Network design using Gurobi optimization in Python.
- 8. Vehicle Routing Problem (VRP) using Google OR-Tools.
- 9. ABC and XYZ inventory classification using real product data.
- 10. Aggregate production planning using MATLAB.
- 11. Supplier selection using AHP (Analytic Hierarchy Process).
- 12. Multi-criteria decision-making using TOPSIS method in Python.
- 13. Simulating supply chain disruptions using Arena.
- 14. Modeling supply chain digital twin using AnyLogic (basic setup).
- 15. Case study implementation: Optimization of an end-to-end supply chain system using mixed-integer linear programming.

Course Type	Embedded Theory and Laboratory (ETL)			
	Theory	75%		
	Continuous Assessment Test-1	15 %		
Mode of Evaluation	Continuous Assessment Test -2	15%		
	Digital Assignments/Quizzes (Min)	20%		
	Final Assessment Test	50%		
	Laboratory	25%		
Prepared by	Er. Anikate Gupta			
Recommended by the				
Board of Studies on				
Date of Approval by				
the Academic Council				

Course Code:MTME603	Course Title: AI Techniques for Renewable Energy System			3	2	4
Version No.	1.0	Sie Energy System				
Course Pre-requisites/ Co-requisites	None					
Anti-requisites (if any).	None					
Objectives:	2. 3. 4.	To provide a foundational understand Intelligence and its relevance to system planning and operation. To develop competency in machine learning algorithms for forecasting and optimizing energy use. To equip students with tools such a neural networks for intelligent con- energy systems. To teach the use of optimization algo- algorithms and swarm intelligence energy system design. To enable practical application that tools, and real-world case studies hybrid energy system environments.	renewa learnin energy as fuzzy trol of orithms ce for	ble g an ger v lo dis like rer	ene nd d nerat gic tribu gen newa	eep tion and ited etic able ons,
	1	CO-PO Mapping				

	CO-I O Mapping					
Course Outcomes	Course Outcome Statement					
CO1	Understand and describe AI principles and identify their significance in renewable energy applications.					
CO2	Develop forecasting models using machine learning and deep learning					
CO3	Design intelligent control systems using fuzzy logic and neural networks for distributed renewable systems.					
CO4	4 Apply evolutionary algorithms for optimization in hybrid and smart energy systems.					
CO5	Simulate and analyze real-world renewable energy problems using Al					
TOTAL HOURS OF INSTRUCTIONS: 45						
Module No. 1	I Introduction to AI and Renewable Energy Systems	9Hours				
Introduction	to fundamentals of Artificial Intelligence (AI), intelligent ag	ents, exper				

Introduction to fundamentals of Artificial Intelligence (AI), intelligent agents, expert
systems, and learning types. Contextual foundation for the use of AI in renewable energy
applications such as solar, wind, biomass, and smart grids.Module No. 2Machine Learning and Forecasting Models9 Hours

Machine learning techniques such as regression, classification, clustering, decision trees, and support vector machines. Deep learning frameworks, including convolutional and recurrent neural networks, applied to solar radiation and wind energy forecasting using real-time datasets.

Module No. 3	Fuzzy Logic and Intelligent Control Systems	9 Hours				
Fuzzy logic theory, fuzzification and defuzzification techniques, Mamdani and Sugeno						
models, and the design of fuzzy controllers for renewable energy applications are						
covered. Use cases include fuzzy-based MPPT controllers, smart battery management						
systems, and hybrid energy system control.						
Module No. 4	Optimization Using Evolutionary Algorithms	9 Hours				

Optimization techniques including Genetic Algorithms (GA), Particle Swarm Optimization (PSO), Ant Colony Optimization (ACO), and Differential Evolution (DE). Applications include hybrid system configuration, power flow optimization, and load scheduling.

 Module No. 5
 Real-time Applications and Case Studies
 9 Hours

Theory to practice through case studies on AI-enabled microgrids, smart grids, energy trading systems, and AI-based predictive maintenance. Tools such as MATLAB, Python (Scikit-learn, TensorFlow), and RETScreen are used for simulations and analysis.

Text Books

- 1. Bhavnesh Kumar, Bhanu Pratap & Vivek Shrivastava, Artificial Intelligence for Solar Photovoltaic Systems: Approaches, Methodologies, and Technologies, Publisher: CRC Press. 1st Edition, 2023.
- 2. Suman Lata Tripathi, Mithilesh Kumar Dubey, Vinay Rishiwal & Sanjeevikumar Padmanaban, *Introduction to AI Techniques for Renewable Energy System*, Publisher: CRC Press. 1st Edition, 2021.
- 3. Sailesh Iyer, Anand Nayyar, Mohd Naved & Fadi Al-Turjman, *Renewable Energy and AI for Sustainable Development*, Publisher: CRC Press. 1st Edition, 2023.

References

- 1. Ashutosh Kumar Dubey, Sushil Kumar Narang, Abhishek Kumar, Vicente García-Díaz & Arun Lal Srivastav, *Artificial Intelligence for Renewable Energy Systems*, Publisher: Woodhead Publishing (Elsevier). 1st Edition, 2022.
- 2. Neeraj Priyadarshi, Sanjeevikumar Padmanaban, Kamal Kant Hiran, Jens Bo Holm-Nielson & Ramesh C. Bansal, *Artificial Intelligence and Internet of Things for Renewable Energy Systems*, Publisher: De Gruyter. 1st Edition, 2021.
- 3. Weihao Hu, Guozhou Zhang, Zhenyuan Zhang, Sayed Abulanwar & Frede Blaabjerg, *AI for Power Electronics and Renewable Energy Systems*, Publisher: IET. 1st Edition, 2024.

- 1. Implementation of linear regression for solar irradiance prediction.
- 2. Development of a decision tree model for wind power classification.
- 3. Forecasting energy demand using time-series models (ARIMA, LSTM).
- 4. Solar power forecasting using Convolutional Neural Networks (CNN).
- 5. Wind speed prediction using Recurrent Neural Networks (RNN).
- 6. Clustering energy consumption patterns using K-means.
- 7. Design and simulation of fuzzy-based MPPT controller for PV systems.
- 8. Battery charge/discharge control using a fuzzy inference system.
- 9. Load management using a fuzzy logic-based controller.
- 10. Optimization of hybrid renewable energy system using Genetic Algorithm (GA).
- 11. Sizing and placement of distributed generation using Particle Swarm Optimization (PSO).
- 12. Implementation of Ant Colony Optimization for power flow optimization.
- 13. Smart grid fault detection using support vector machines.
- 14. Predictive maintenance using classification algorithms on SCADA data.
- 15. Case study implementation: AI-based smart grid controller using MATLAB/Simulink.

Course Type	Embedded Theory and Laboratory (ETL)			
	Theory	75%		
	Continuous Assessment Test	15%		
Mode of Evaluation	Continuous Assessment Test-2	15%		
	Digital Assignment/Quizzes (Min)	20%		
	Final Assessment Test	50%		
	Laboratory	25%		
Prepared by	Er. Anikate Gupta			
Recommended by the				
Board of Studies on				
Date of Approval by				
the Academic Council				

Course Code	. MTME(04	Course	Title: Smart Automation with	ТРС	3	2	4
Course Code: MTME604		AI for	Industry 4.0	IFC	3	2	4
Version No.	No. 1.0						
Course Pre-r Co-requisites	· · · · · · · · · · · · · · · · · · ·	None					
Anti-requisit	es (if any).	None					
1. Understand the evolution and framework of Indu 4.0. 2. 2. Learn to apply ML and AI algorithms to so industrial problems. 3. Understand the architecture and integration of Io' industrial applications. 4. Explore advanced technologies driving smart fac innovations						o so f Io7	olve Γ in
			CO-PO Mapping				
Course Outcomes			Course Outcome Statement				
CO1		Understand the fundamental concepts of Industry 4.0 and smart automation technologies.					
CO2		Apply AI and ML algorithms for predictive maintenance and smart decision-making.					
CO3	-	-	nt IIoT-enabled systems for industri				
CO4	Explore eme in Industry 4		chnologies like digital twins, AR/V cations.	R, and	bloc	kch	ain
CO5	Apply Real-	Time Im	plementation and Case Studies in In				
			TOTAL HOURS OF INST	FRUCT	ION	IS: 4	5
Module No. 1	Introdu	iction to	Industry 4.0 and Smart Automati	ion	0	Hou	re
			•				
Overview of Industrial Revolutions: From Industry 1.0 to 4.0.Key Concepts of Industry 4.0: Cyber-Physical Systems, IoT, Big Data, Cloud Computing, Role of Artificial Intelligence in Smart Manufacturing. Smart Sensors and Actuators: Types, Applications, and Standards Industrial Communication Protocols: OPC-UA, MQTT, Profinet							
Module No. 2	Module No. 2Machine Learning and AI for Automation9 Hours						rs
Fundamentals, Case Studies: AI-Driven Automation in Manufacturingof Machine Learning: Supervised, Unsupervised, and Reinforcement Learning, Algorithms for Smart Automation: Decision Trees, Neural Networks, and SVM,Predictive Maintenance using Machine Learning,Real-Time Data Analytics and Edge AI in Industrial Applications.							

Module No. 3	Industrial IoT (IIoT) and Data Integration	9 Hours
--------------	--	---------

IoT Architecture for Industry 4.0, IIoT Platforms and Middleware, Data Acquisition, Storage, and Processing in IIoT Systems, AI in IIoT: Use Cases and Challenges, Security and Privacy Concerns in IIoT Systems.

Module No. 4	Emerging T	echnologies and	Smart Facto	ry Applications	9 Hours	
Digital Twins	s and their	Role in Smart	Automation	n, AI-Powered	Robotics in	
Manufacturing	, Block chain	for Supply Chain	Automation,	Augmented Real	ity (AR) and	
Virtual Reality	(VR) in Sma	rt Factories, Smart	t Factory Use	Cases and Future	e Trends	
Module No. 5	Real-Time	Implementation	and Ca	se Studies in	9 Hours	
	Industry 4.0)				
Deployment of AI in Smart Factories.Cybersecurity and Data Privacy in Industry						
4.0.Integration of Cyber-Physical Systems (CPS).Challenges in Implementing Smart						
Automation.						

Text Books

- 1. "Industry 4.0: The Industrial Internet of Things" by Alasdair Gilchrist, A press, 2016.
- 2. Nazmul Siddique, Mohammad Shamsul Arefin, M Shamim Kaiser, ASM Kayes, Applied Intelligence for Industry 4.0, Chapman & Hall, 2023.
- 3. Avinash Chandra Pandey, Abhishek Verma, Vijaypal Singh Rathor, Munesh Singh, Ashutosh Kumar Singh, Intelligent Analytics for Industry 4.0 Applications, CRC Press, 2023.

Reference Books

- 1. "Smart Manufacturing: Concepts and Methods" by Anthony Tarantino, Wiley, 2022.
- 2. "Machine Learning and AI for Industrial IoT" by Pethuru Raj and Preetha Evangeline, Springer, 2021.
- 3. "Digital Twin Technologies and Smart Cities" by Farsi, H. and Daneshkhah, A., Springer, 2020.
- 4. "Blockchain and Smart Contracts for Industry 4.0" by Ilias G. Maglogiannis, Springer, 2021.

List of Exercise

- 1. Introduction to Industry 4.0 lab setup: Architecture, components, and use cases
- 2. PLC programming for automated processes using ladder logic for sorting/conveyor control
- Simulation of smart manufacturing using Digital Twin platforms (e.g., Siemens NX/MATLAB Simulink)
- 4. IoT sensor data acquisition and control through Raspberry Pi/Arduino
- Real-time monitoring and control via SCADA and IoT dashboards (e.g., Node-RED, ThingsBoard)
- 6. AI-based object detection using OpenCV and YOLOv5 for robotic pick-and-place
- 7. Robotic arm control using inverse kinematics and AI for task optimization
- Predictive analytics for machine failure using ML (Decision Trees, SVM, Neural Ne Smart AGV navigation system using line following and obstacle avoidance (infrared + AI) works)
- 9. Smart AGV navigation system using line following and obstacle avoidance (infrared + AI)
- 10. Integration of cloud platforms (AWS, Azure, or Firebase) for device control and data logging
- 11. Real-time energy monitoring and optimization using smart meters and AI models
- 12. Developing a Cyber-Physical System (CPS) prototype using sensors and cloudedge communication
- 13. Voice/gesture-based automation control using AI tools (e.g., Google Assistant API, hand tracking)
- 14. Digital Quality Inspection system using image processing for defect detection in products
- 15. Capstone Mini Project: Design and demonstration of a smart automated cell for an Industry 4.0 use case

Course Type

Embedded Theory & Lab (ETL)

	Theory	75%
	Continuous Assessment Test-1	15 %
Made of Freedowstines	Continuous Assessment Test -2	15%
Mode of Evaluation	Digital Assignments/Quizzes (Min)	20%
	Final Assessment Test	50%
	Laboratory	25%
Prepared by	Kushdeep Rana	
Recommended by the		
Board of Studies on		
Date of Approval by		
Academic Council		

Course Code: MTME605	Course Title: Robotics and Artificial Intelligence	ТРС	3	2	4
Version No.	1.0				
Course Pre-requisites/ Co-requisites	None				
Anti-requisites (if any).	None				
Objectives:	 Introduce students to the core principle artificial intelligence (AI). Understand the kinematics, dynamics robotic systems. Explore algorithms for machine learning and autonomous systems. Study the integration of sensors, actual systems in robotics. Develop skills in programming robots practical applications. Analyze the ethical implications and cha and AI deployment. 	s, and g, comp ators, ar and AI	cor outer nd ro mo	ntrol r visi eal-t dels	of ion, ime for

Course Outcomes	Course Outcome Statement
CO1	Analyze the kinematics and dynamics of robotic systems.
CO2	Implement control algorithms for robotic motion and path planning.
CO3	Develop and train AI models for robotics and automation using modern tools.
CO4	Integrate sensors and actuators into robotic systems and implement real-time processing.
CO5	Evaluate the performance of robotic and AI systems using simulations and experiments, while ensuring ethical and responsible application in engineering solutions.
	TOTAL HOURS OF INSTRUCTIONS: 45

Module No. 1Introduction to Robotics and Artificial Intelligence:7 Hours

Definition, history, and scope of robotics and AI; Overview of robotic systems, manipulators, and mobile robots; Introduction to AI, machine learning, and deep learning concepts; Ethical and social implications of robotics and AI.

Module No. 2 Kinematics, Dynamics, and Control of Robots						
Introduction t	Introduction to robotic kinematics (forward and inverse), trajectory planning, and					
dynamics; Ov	dynamics; Overview of control techniques, including PID control and model-base					
control; Path p	control; Path planning and obstacle avoidance algorithms.					
Module No. 3	AI Algorithms for Robotics	10 Hours				

Supervised, unsupervised, and reinforcement learning methods; Applications of neural networks and deep learning in robotics; Decision-making algorithms and probabilistic models (e.g., Markov Decision Processes).

Module No. 4Sensors, Actuators, and Embedded Systems in Robotics10 HoursTypes of sensors (proximity, vision, tactile, etc.); Actuators and their selection (DC
motors, stepper motors, servo motors); Introduction to embedded systems for robotics;
Basics of ROS (Robot Operating System).10 Hours

Module No. 5 Robotics and AI Applications:

10 Hours

Industrial robotics, collaborative robots (cobots), and automation; Computer vision applications in robotics; Autonomous vehicles and drones; Emerging trends: human-robot interaction, soft robotics, and swarm robotics.

Text Books

- 1. Craig, J. J., Introduction to Robotics: Mechanics and Control, Pearson Education, 2022.
- 2. Russell, S., & Norvig, P., Artificial Intelligence: A Modern Approach, Pearson, 2023.
- 3. Siciliano, B., & Khatib, O., Springer Handbook of Robotics, Springer, 2022.

References

- Thrun, S., *Probabilistic Robotics*, MIT Press, 2021.
- Choset, H., *Principles of Robot Motion: Theory, Algorithms, and Implementation,* MIT Press, 2020.
- Goodfellow, I., Bengio, Y., & Courville, A., *Deep Learning*, MIT Press, 2021.
- Zhang, D., & Ge, S. S., *Adaptive Control of Robot Manipulators*, World Scientific, 2019.

- 1. Introduction to Robotics and AI Systems: Understand the basics of robotics, automation, and AI, and their integration for industrial applications
- 2. Programming of Robotic Arms: Learn to program and control robotic arms for basic tasks like pick-and-place operations
- 3. Path Planning Algorithms for Robotics: Implement basic path planning algorithms like A* and Dijkstra's for robot navigation
- 4. AI-based Object Recognition for Robotics: Develop AI models using computer vision to enable object detection and recognition for robotic arms
- 5. Sensor Integration and Control in Robotics: Integrate sensors (e.g., cameras, proximity sensors) with robotic systems to enable real-time feedback and decision-making
- 6. Simulation and Performance Evaluation of Robotic Systems: Simulate robotic systems and evaluate their performance using AI-based optimization and control methods
- 7. Implementation of Inverse Kinematics for a 2-DOF Robot Arm: Solve joint angles using Python/MATLAB for specific end-effector positions
- 8. Reinforcement Learning for Robotic Control: Train a robot using Q-learning to optimize movement in a constrained environment
- 9. ROS-Based Sensor Data Fusion: Combine data from multiple sensors (e.g., LiDAR,

ultrasonic) using ROS nodes for better situational awareness

- 10. Autonomous Navigation in Mobile Robots: Use SLAM (Simultaneous Localization and Mapping) in Gazebo/ROS to enable mobile robot path planning
- 11. Project 1: AI-Enabled Indoor Delivery Robot: Develop a robot capable of navigating an indoor environment using AI-based path planning and obstacle avoidance
- 12. Project 2: Vision-Based Fruit-Picking Robot: Implement a system for detecting, classifying, and picking fruits using robotic arms and deep learning models
- 13. Project 3: Human-Following Robot: Design a mobile robot that uses computer vision and AI to track and follow a specific individual
- 14. Project 4: Robotic Surveillance Drone: Create an autonomous drone using AI for object tracking and patrolling
- 15. Project 5: Gesture-Controlled Robotic Assistant: Develop a hand-gesture recognition system to control robot movements using AI and embedded vision systems

Course Type	Embedded Theory and Lab (ETL)	
	Theory	75%
	Continuous Assessment Test-1	15%
Mode of Evaluation	Continuous Assessment Test-2	15%
	Digital Assignments/Quizzes (Min)	20%
	Final Assessment Test	50%
	Laboratory	25%
Prepared by	Dr. Sukhdeep Singh	
Recommended by the		
Board of Studies on		

Course Code	•	Course Title: Advanced Product Design				
MTME606		and Development	TPC	3	2	4
Version No.		1.0				
Course Pre-r Co-requisites		None				
Anti-requisit	es (if any).	any). None				
Objectives:	 To understand the principles and practices of advance product design and development. To equip students with tools and techniques for innovate concept generation and product optimization 				rive ng,	
Course		Course Outcome Statement				
Outcomes		Course Outcome Statement				
CO1	Analyze of specification	customer requirements and translate them ons.	into	pr	odu	ct
CO2	Apply syst developme	ematic design methodologies and advanced to nt.	ools fo	r co	nce	pt
CO3	Develop ar	nd test prototypes using modern manufacturing t	techno	logi	es.	
CO4		Manage product development projects, considering market needs, quality, and compliance.				у,
CO5	Incorporate	e sustainability and cost-effectiveness in product	t desig	gn.		
	•	TOTAL HOURS OF INST	RUCT	ION	NS: 4	15
Module No. 1	I Int	roduction to Advanced Product Design and		9 E	Iour	'S
Development: Overview of the product design and development process, Role of product design in the business environment, Design thinking and user-centric design principles, Market research: Identifying customer needs and competitive analysis, Product lifecycle management (PLM).						
Module No. 2	Module No. 2Conceptual Design and Development:9 H			Hou	rs	
Concept sele modularity,	Techniques for idea generation (brainstorming, TRIZ, functional decomposition), Concept selection using decision matrices and scoring techniques, Systems design and modularity, Tools: Quality Function Deployment (QFD) and Morphological Charts, Case studies: Successful product innovations.					
Module No. 3	3	Prototyping, Testing, and Optimization:		91	Hou	rs

printing, CNC	otypes (physical, digital, and hybrid), Rapid prototyping techn C machining, Design validation and functional testing, lity (DFM) and assembly (DFA), Optimization strategies: C ce trade-offs.	Design for					
Module No. 4	Product Development Management:	9 Hours					
scheduling; te	Integrated product development; product data management (PDM); project planning and scheduling; team dynamics and collaboration; intellectual property rights (IPR); case studies on successful product design and development.						
Module No. 5	Advanced Tools and Sustainability:	9 Hours					
technologies:	ols for simulation-driven design (FEA, CFD), Integration of IoT, AI and smart products, Sustainability in product design lifecycle assessment.						
Develo 2. Selikof <i>Manufa</i> 3. Raja, V	Karl T., Eppinger, Steven D., and Yang, Maria C. – <i>Product D</i> pment, 7th Edition (2020), McGraw-Hill Education. f, Steven – <i>The COMPLETE BOOK of Product Design, Develo</i> <i>acturing, and Sales</i> , 1st Edition (2021), Independently Publishe V. Prabhu – Advances in Simulation, Product Design and Devel (2022), Springer.	opment, d.					
(2021),	lis, Nikolaos – Advances in Product Design Engineering, Springer. f, Steven – The Complete Book of Product Design, D						
Manufa	acturing, and Sales, 1st Edition (2021), Independently Publishe	d.					
	Pugh, "Tool Design – Integrated Methods for Success ering", Addison Wesley Publishing, New york, NY	ful Product					
produce 2. Generation tools. 3. Study tinteration 4. Redesign DFMA 5. Createin tools 1 6. Performing	ct surveys/interviews to identify unmet customer needs for ct category. te at least 5 different design concepts using brainstorming a Evaluate using a weighted decision matrix. he ergonomics and aesthetics of existing products. Analyze use ction and suggest design improvements. gn a simple mechanical product (e.g., stapler, bottle cap) co A principles. a physical prototype using 3D printing or a virtual model us ike SolidWorks/Fusion 360. n Failure Mode and Effects Analysis (FMEA) for the proposed fy potential failure modes and corrective actions.	and TRIZ er-product onsidering sing CAD design to					
7. Analyze the environmental impact of an existing product (LCA approach) and							

suggest design changes to improve sustainability.

- 8. Work in teams to design and develop a basic product (e.g., mechanical toy, smart stand, ergonomic handle) from need identification to prototyping.
- 9. Disassemble an existing mechanical product (e.g., hand blender, stapler, bicycle brake) to analyze its components, functionality, and manufacturing process.
- 10. Analyze a real-world product design patent related to mechanical systems.
- 11. Project 1 Redesign a commonly used hand tool to improve user comfort, reduce fatigue, and enhance performance.
- 12. Project 2 Design a lightweight, foldable bicycle targeting urban commuters with limited storage space.
- 13. Project 3 Design a user-friendly and affordable casing/product body for a small medical device suitable for rural or low-income regions.
- 14. Project 4 Develop an innovative, biodegradable, and reusable packaging solution to reduce plastic waste in e-commerce shipping.
- 15. Project 5 Design modular and multi-functional furniture (e.g., a convertible bed-table unit) for urban apartments.

Course Type	Embedded Theory and Laboratory (ETL	<i>.</i>)	
	Theory	100	
	Continous Assessment Test-1	15%	
Mode of Evolution	Continous Assessment Test-1	15%	
Mode of Evaluation	Digital Assignments/Quizzes (Min)	20%	
	Final Assessment Test	50%	
	Laboratory	25%	
Prepared by	Dr. Sahil Sharma		
Recommended by the			
Board of Studies on			
Date of Approval by			
the Academic Council			

		Course Title: HVAC Design and Energy	. <u></u>			
Course Code:MTM607		Management	TPC	3	2	4
Version No.		1.0				·
Course Pre-requ Co-requisites	requisites/ None					
Anti-requisites (i	if any).	None				
Objectives:	 To provide an in-depth understanding of HVAC design principles and energy management techniques. To enable students to analyze and design efficient HVAC systems for various applications. 				ient and	
		CO-PO Mapping				
Course Outcomes		Course Outcome Statement				
CO1		Understand fundamental concepts of HVAC systems and psychrometric processes.				nd
CO2		Apply load estimation and equipment selection techniques for HVAC systems.				ſC
CO3	-	Analyze HVAC systems for energy efficiency using modern tools and standards.				
CO4	Ū	Design optimized HVAC systems integrating energy conservation measures.				on
CO5	Perforn design	n energy audits and propose HVAC retrofittin	ng for s	usta	inab	ole
		TOTAL HOURS OF IN	STRUC	CTIC)NS:	: 45
Module No. 1	Fundam	entals of HVAC Systems		9 H	Iou	ſS
This module introduces the fundamental principles of HVAC systems, covering their scope, applications, and importance in modern infrastructure. It delves into psychrometrics, focusing on air properties, processes, and chart usage. Additionally, it covers heating and cooling load calculations, including building heat gain and loss, U-value, and ventilation loads, laying the foundation for advanced design.				into 7, it		
Module No. 2	Module No. 2HVAC System Components and Design9 Hours				rs	
This module delves into the design and analysis of gating systems, focusing on moul filling characteristics, fluidity, turbulence, and the types of gating elements. It include mould filling analysis considering head losses and explores the concepts of cooling an solidification, including nucleation, growth, progressive and directional solidification, an Chvorinov's Rule (CFR). The mathematical treatment of solidification processes is emphasized, addressing factors like solidification time and rate. Feeder design and analysis topics include feeder shapes, risering curves, NRL methods, feeding distance, rise		des and and s is ysis				
	placement, and the design of feed aids to ensure defect-free casting.					
Module No. 3	Energy I	Management in HVAC Systems		9 F	Iou	ſS

HVAC	ng on energy efficiency, this module covers energy conservation techniques for Systems and the role of Building Energy Management Systems (BEMS). Students plore standards and codes like ASHRAE, ISO, and ECBC guidelines while learning
	renewable energy integration, including solar cooling and geothermal heat pumps,
	gn systems that balance performance with sustainability.9 Hourse No. 4Advances and Case Studies in HVAC9 Hours
	al module highlights advanced HVAC technologies, such as Variable Refrigerant
	VRF) systems, smart HVAC, and IoT integration. Computational Fluid Dynamics
	applications in HVAC design are also explored. Real-world case studies provide
	into energy-efficient building designs and HVAC strategies, helping students
U	et theory to practice.
	e No. 5 Simulation and Audit of HVAC Systems 9 Hours
	ing and simulation of HVAC systems using software tools (HAP, TRACE,
	Plus, eQuest); Energy audit methodology and reporting; Case studies on HVAC
	audits; Life cycle cost analysis (LCC); Environmental impact and carbon footprint
calcula	
Text B	
1.	Ronald H. Howell, Harry J. Sauer Jr., and William J. Coad, <i>Principles of Heating</i> ,
	Ventilation, and Air Conditioning, ASHRAE, 2023.
2.	R.S. Khurmi and J.K. Gupta, A Textbook of Refrigeration and Air Conditioning,
2	S. Chand Publishing, 2020. 5th Edition.
5.	Manohar Prasad, Refrigeration and Air Conditioning Data Book, New Age International Publishers, 2021.
1	R.K. Rajput, Thermal Engineering (Including RAC), Laxmi Publications, 2021.
4.	10th Edition,
Refere	
	ASHRAE, ASHRAE Handbook – Fundamentals, ASHRAE, 2021.
	Althouse, Turnquist, and Bracciano, Modern Refrigeration and Air Conditioning,
	Goodheart-Willcox, 2021.
3.	Wayne C. Turner and Steve Doty, Energy Management Handbook, Fairmont
	Press, 2022.
4.	Peter Gevorkian, Sustainable Energy Systems in Architectural Design, McGraw-
L	Hill, 2020.
	Exercise
1.	Introduction to HVAC Lab Equipment and Safety Guidelines: Familiarization
2	with laboratory tools, test rigs, and safety protocols.
2.	
	properties and processes like heating, cooling, humidification, and dehumidification.
3	Performance Evaluation of a Vapour Compression Refrigeration System :
5.	Measurement of COP, power consumption, and refrigerant properties under
	different load conditions.
4.	Analysis of Vapour Absorption Refrigeration System: Study of system
	operation and comparison with vapour compression systems in terms of efficiency
	and environmental impact.

	g Test Rig Experiment: Calculation of co							
	, and system performance under various of							
e	Performance Analysis: Determination	on of cooling tower						
effectiveness, ran								
7. Duct Design and	and Air Flow Measurement: Measurement of air velocity and							
1	using anemometers and manometers.							
8. Energy Audit o	f an HVAC System: Conduct an en	ergy audit to identify						
inefficiencies and	nefficiencies and suggest optimization techniques for energy conservation.							
9. Renewable Ener	gy Integration in HVAC:Study of solar-a	assisted HVAC systems						
or geothermal hea	t pumps for sustainable energy application	ons.						
10. Use of Computat	ional Fluid Dynamics (CFD) in HVAC	Design : Introduction to						
CFD software to	ols for analyzing air flow and thermal	distribution in HVAC						
systems.								
•	stem Analysis: Study of IoT-enabled H	VAC systems and their						
	for energy management.							
	tion Analysis in HVAC Systems: Mea	surement of noise and						
	HVAC equipment and strategies for mit							
	C Technologies: Performance study of Va	0						
(VRF) and heat re		0						
× /	d Troubleshooting of HVAC System	ms: Identification and						
	mon faults in HVAC systems through har							
	esign, fabrication, or analysis of a small-							
energy manageme	•	5						
Course Type	Embedded Theory and Lab (ETL)							
	Theory	75%						
	Continuous Assessment Test-1	15 %						
Mode of Evaluation	Continuous Assessment Test -2	15%						
	Digital Assignments/Quizzes (Min)	20%						
	Final Assessment Test 50%							
	Laboratory	25%						
Prepared by	Dr. Shivinder Singh							
Recommended by the								
Board of Studies on								
Date of Approval by								
Academic Council								

Course Code: MTEME608		Course Title: AI-Driven Material Development	TPC	2	0	2	
Version No.		1.0					
Course Pre-req Co-requisites	rse Pre-requisites/ requisites None						
Anti-requisites	(if any).	None					
Objective	es:	 Introduce the fundamentals of artificial intelligence (AI) in material science. Understand the role of machine learning (ML) and data driven approaches in material discovery. Explore computational techniques for predicting material properties and behavior. Study the integration of AI and high-throughper experiments for material development. Learn to apply AI models for real-time material design an optimization. Analyze the impact of AI on accelerating innovation in material science and manufacturing. 				ata- erial aput and	
Course Outcomes		Course Outcome Statement					
CO1	Explain the principles of AI and machine learning in the context of material science.					of	
CO2	Use AI-driven techniques to predict material properties and performance.				nd		
CO3	Implement data-driven models for material discovery and development.						
CO4	material	e AI tools with experimental and computation optimization.					

CO5 Evaluate AI algorithms and datasets for material applications and apply AI models to real-world challenges in advanced materials and manufacturing processes.

TOTAL HOURS OF INSTRUCTIONS: 30

Module No. 1Introduction to AI in Material Science:

6 Hours

Overview of AI and machine learning; Key applications of AI in material science; Basics of data science for material design; Challenges in data acquisition and preprocessing in material datasets; Case studies in AI applications for materials.

Module No. 2	6 Hours					
Supervised, u	nsupervised, and reinforcement learning methods; Regre	ession and				
classification t	classification techniques for material property prediction; Neural networks and deep					
learning in ma	learning in material science; Introduction to generative models for material design;					
Hands-on exerc	cises with AI tools.					

Module No. 3 High-Th	roughput and Computational Approaches:	6 Hours		
High-throughput experimentation and data generation; Computational material modeling				
(Density Functional Theory, Molecular Dynamics); Integrating AI with computational				
simulations for material property prediction; Accelerating discovery with automated				
workflows.				
Module No. 4 Optimiza	ation and Design Using AI	6 Hours		
Multi-objective optimization in material design; Bayesian optimization and genetic				
algorithms for material development; Real-time material behavior prediction; AI tools for				
additive manufacturing and composite materials.				
Module No. 5 Future 7	Frends and Case Studies in AI-Driven Material	6 Hours		
Develop				
AI in sustainable materials and energy storage (e.g., batteries, solar cells); AI for				
nanomaterials and biomaterials; Ethical considerations in AI-driven material design;				
Case studies on industry applications and success stories in AI-driven innovations.				
Text Books				
1. Dr. D.S. Kumar, Elements of Mechanical Engineering, S.K. Kataria & Sons, 2023.				
2. P.K Nag, Engineering Thermodynamics, TMH, New Delhi, 2022				
References				
1. Hazra & Chaudhary, Workshop Technology Vol I &II, Asian Book Comp., New				
Delhi, 2022				
2. Workshop Technology Vol I, II & III- Chapman, WAJ, Edward Arnold, 2022				
3. C.P Arora, Refrigeration & Air conditioning, TMH, New Delhi, 2021				
Course Type Theory (TH)				

Course Type	Theory (TH)	
	Theory	100%
	Continuous Assessment Test-1	15%
Mode of Evaluation	Continuous Assessment Test-2	15%
	Digital Assignments/Quizzes (Min)	20%
	Final Assessment Test	50%
Prepared by	Dr. Sukhdeep Singh	
Recommended by the		
Board of Studies on		
Date of Approval by		
the Academic Council		
Date of Approval by		
the Academic Council		